首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependences of the conductivities parallel and perpendicular to the layers in layered TlGaSe2 single crystals are investigated in the temperature range from 10 K to 293 K. It is shown that hopping conduction with a variable hopping length among localized states near the Fermi level takes place in TlGaSe2 single crystals in the low-temperature range, both along and across the layers. Hopping conduction along the layers begins to prevail over conduction in an allowed band only at very low temperatures (10–30 K), whereas hopping conduction across the layers is observed at fairly high temperatures (T?210 K) and spans a broader temperature range. The density of states near the Fermi level is determined, N F=1.3×1019eV·cm3)?1, along with the energy scatter of these states J=0.011 eV and the hopping lengths at various temperatures. The hopping length R along the layers of TlGaSe2 single crystals increases from 130 Å to 170 Å as the temperature is lowered from 30 K to 10 K. The temperature dependence of the degree of anisotropy of the conductivity of TlGaSe2 single crystals is investigated.  相似文献   

2.
By the addition of Mn or Ni into Ge42S58, a large electrical conductivity increase has been observed in the thermally evaporated sample in contrast with the melt-quenched sample. Mn is supposed to be substitutionally incorporated into amorphous network in negative charge state, working as an acceptor. In the case of Ni, the predominance of variable range hopping type conduction obscures the incorporation scheme of Ni. From ESR measurements, the incorporation scheme of Mn and Ni is found to be different between the evaporated sample and the melt-quenched sample.  相似文献   

3.
A.F. Qasrawi 《哲学杂志》2013,93(22):3027-3035
The effect of photoexcitation on the current transport mechanism in amorphous indium selenide thin films was studied by means of dark and illuminated conductivity measurements as a function of temperature. Analysis of the dark electrical conductivity in the temperature range 110–320 K reveals behaviour characteristic of carriers excited to the conduction band and thermally assisted variable-range hopping (VRH) at the Fermi level above 280 K and below 220 K, respectively. In the temperature range 220–280 K, a mixed conduction mechanism was observed. A conductivity activation energy of ~300 meV (above 280 K), a density of localised states (evaluated assuming a localisation length of 5 Å) of 1.08 × 1021 cm?3 eV?1, an average hopping distance of 20.03 Å (at 120 K) and an average hopping energy of 27.64 meV have been determined from the dark electrical measurements. When the sample was exposed to illumination at a specific excitation flux and energy, the values of the conductivity activation energy, the average hopping energy and the average hopping range were significantly decreased. On the other hand, the density of localised states near the Fermi level increased when the light flux was increased. Such behaviour was attributed to a reversible Fermi level shift on photoexcitation.  相似文献   

4.
DC electrical conductivity (σdc) of electron-doped antiferromagnetic CaMn1−xCrxO3 (0?x?0.3) has been discussed elaborately in the light of polaron hopping conduction. The increase in Cr doping concentration increases the conductivity and decreases the activation energy. Non-adiabatic polaron hopping conduction is observed in all the manganites at high temperatures. The analysis of σdc data shows that small polarons are formed at lower concentrations (?5%) of Cr doping and undoped samples. However, large polarons are materialized at higher doping (?10%) concentrations. This is consistent with the fact that doped Cr3+ has larger ionic size compared to that of Mn4+. Again, strong electron-phonon (e-ph) interaction is perceived in undoped and 5% Cr-doped samples but not in manganites with larger doping concentration. This also confirms the formation of larger polarons with the increase of x. Mott's variable range hopping (VRH) model can elucidate the dc conductivity at very low temperatures. It has been detected that single phonon-assisted hopping is responsible for the dc conduction in the Cr-doped CaMnO3 manganites.  相似文献   

5.
A temperature-dependent hopping conduction was studied in lithium (Li)-doped zinc oxide (ZnO) in the temperature range 10–300 K. Monodoping of Li in ZnO was made as suggested by the theory based on the first principle calculations. Li-doped ZnO films were deposited both on glass and quartz substrates by pulsed laser deposition (PLD) in presence and absence of oxygen ambience. The films were found to be p-type. It was found that whereas in the temperature range 10–40 K, variable range hopping resulted in Mott’s conductivity, above 40 K, the conductivity was governed by the thermal assisted hopping.  相似文献   

6.
A series of high quality single crystalline epitaxial Zn0.95Co0.05O thin films is prepared by molecular beam epitaxy. Superparamagnetism and ferromagnetism are observed when the donor density is manipulated in a range of 1018 cm-3-1020 cm-3 by changing the oxygen partial pressure during film growth. The conduction shows variable range hopping at low temperature and thermal activation conduction at high temperature. The ferromagnetism can be maintained up to room temperature. However, the anomalous Hall effect is observed only at low temperature and disappears above 160 K. This phenomenon can be attributed to the local ferromagnetism and the decreased optimal hopping distance at high temperatures.  相似文献   

7.
The InSe films of different thicknesses (290–730 mm) were deposited onto glass substrates under a pressure of 3×10?5 Torr by vacuum evaporation method. The composition (In=53.50%, Se=46.50%) of this film was confirmed using Auger Electron Spectroscopy (AES). Thicknesses of the deposited films have been measured using a Multiple Beam Interferometry. The amorphous nature of the film is confirmed with X-ray diffractogram. From the transmittance spectra in the range of 500 nm-1200 nm, it is observed that the film showed direct allowed transition. Effect of thickness on the optical parameters such as the fundamental band gap, absorption constant, refractive index of InSe thin films are reported. Under low electric field (~ 1.5×105 Vcm?1), the results of DC conductivity measurements revealed that the variable range hopping is the dominant conduction mechanism. The values of localized states density, localization radius and hopping energy of this film are estimated as 5.57×1020 cm?3eV?1, 0.84 Å and 0.247 eV, respectively.  相似文献   

8.
The low-temperature 2D variable range hopping conduction over the states of the upper Hubbard band is investigated in detail for the first time in multilayered Be-doped p-type GaAs/AlGaAs structures with quantum wells of 15-nm width. This situation was realized by doping the layer in the well and a barrier layer close to the well for the upper Hubbard band (A + centers) in the equilibrium state filled with holes. The conduction was of the Mott hopping type in the entire temperature range (4?0.4 K). The positive and negative magnetoresistance branches as well as of non-Ohmic hopping conduction at low temperature are analyzed. The density of states and the localization radius, the scattering amplitude, and the number of scatterers in the upper Hubbard band are estimated. It is found that the interference pattern of phenomena associated with hopping conduction over the A + band is qualitatively similar to the corresponding pattern for an ordinary impurity band, but the tunnel scattering is relatively weak.  相似文献   

9.
The Hall effect in heterostructures with a two-dimensional array of tunneling-coupled Ge quantum dots grown by molecular-beam epitaxy on Si is investigated. The conductivity of these structures in zero magnetic field at 4.2 K varies in the range of 10?12?10?4 Ω?1, which includes both the diffusive transport under weak localization conditions and hopping conduction. It is shown that the Hall effect can be discerned against the magnetoresistance-related background in both high- and low-conductivity structures. The Hall coefficient in the hopping regime exhibits a nonmonotonic dependence on the occupancy of quantum dots by holes. This behavior correlates with that of the localization length of the hole wavefunctions.  相似文献   

10.
Magnetic and magnetotransport properties of GaAs(δ〈Mn〉)/In0.17Ga0.83As/GaAs quantum wells with different Mn concentrations are studied. The delta-doped manganese layer has been separated from the GaAs quantum well with a spacer with an optimal thickness (3 nm), which has provided a sufficiently high hole mobility (≥103 cm2V?1 s?1) in the quantum wells and their effective exchange with Mn atoms. It is found that the anomalous Hall effect (AHE) is exhibited only in a restricted temperature range above and below the Curie temperature, while the AHE is not observed in quantum wells with quasi-metallic conductivity. Thus, it is shown that the use of the AHE is inefficient in studying magnetic ordering in semiconductor systems with high-mobility carriers. The features observed in the behavior of the resistance, magnetoresistance, and Hall effect are discussed in terms of the interaction of holes with magnetic Mn ions with regard to fluctuations of their potential, hole transport on the percolation level, and hopping conduction.  相似文献   

11.

The frequency (1-10 kHz) and temperature (80-350 K) dependences of the ac conductivity and dielectric constant of the V2O5-MnO-TeO2 system, containing two transition-metal ions, have been measured. The dc conductivity dc measured in the high-temperature range (200-450 K) decreases with addition of the oxide MnO. This is considered to be due to the formation of bonds such as V--O--Mn and Mn--O--Mn in the glass. The conductivity arises mainly from polaron hopping between V4+M and V5+ ions. It is found that a mechanism of adiabatic small-polaron hopping is the most appropriate conduction model for these glasses. This is in sharp contrast with the behaviour of the Mn-free V2O5-TeO2 glass, in which non-adiabatic hopping takes place. High-temperature conductivity data satisfy Mott's small-polaron hopping model and also a model proposed by Schnakenberg in 1968. A power-law behaviour ( ac = s , with s < 1) is well exhibited by the ac conductivity σac data of these glasses. Analysis of dielectric data indicates a Debye-type relaxation behaviour with a distribution of relaxation times. The MnO-concentration-dependent σac data follow an overlapping large-polaron tunnelling model over the entire range of temperatures studied. The estimated model parameters are reasonable and consistent with changes in composition.  相似文献   

12.
The temperature dependence of the electrical conductivity of SIPOS shows that there are two kinds of conduction mechanisms, conduction in extended states and hopping conduction through localized states dominant above and below room temperature, respectively. The change in the conductance of a SIPOS film due to a transverse electric field can well be understood by the CFO model of amorphous semiconductors and indicates that the Fermi level in the thermal equilibrium is near the midgap, and the results show the density of localized states at the Fermi level to be about 1020 cm?3 eV?1.  相似文献   

13.
Regularities are studied in charge transport due to the hopping conduction of holes along two-dimensional layers of Ge quantum dots in Si. It is shown that the temperature dependence of the conductivity obeys the Efros-Shklovskii law. It is found that the effective localization radius of charge carriers in quantum dots varies nonmonotonically upon filling quantum dots with holes, which is explained by the successive filling of electron shells. The preexponential factor of the hopping conductivity ceases to depend on temperature at low temperatures (T<10 K) and oscillates as the degree of filling quantum dots with holes varies, assuming values divisible by the conductance quantum e2/h. The results obtained indicate that a transition from phonon-assisted hopping conduction to phononless charge transfer occurs as the temperature decreases. The Coulomb interaction of localized charge carriers has a dominant role in these phononless processes.  相似文献   

14.
Different mixed iron-cobalt molybdates Co1−xFexMoO4 (0 < x ≤ 1) were prepared by means of a ceramic process. The influence of the isostructural substitution of Co2+ by Fe2+ and Fe3+ on the electrical conductivity of CoMoO4 was studied in the temperature range (50–600°C). The results show that the iron substitution increases the electrical conductivity and changes the conduction mechanism of CoMoO4. From a band conduction mechanism with an activation energy higher than 0.8 eV the conduction mode transforms into a hopping mechanism between the Fe2+ and Fe3+ ions in the octahedrally coordinated divalent cation sublattice. The activation energy is lower (0.4 eV) and does not alter around the polymorphic transition temperature. Owing to careful oxidations of the samples into cation deficient phases it was shown that the conductivity is proportional to the [Fe2+]/[Fe3+] ratio. These mild oxidations confirm the hopping mechanism. The presence of Co2+/Co3+ pairs has a minor contribution to the overall conductivity process. Paper presented at the 2nd Euroconference, Funchal, Madeira, Portugal, 10 – 16 Sept. 1995  相似文献   

15.
We report variable temperature resistivity measurements and mechanisms related to electrical conduction in 200 keV Ni2+ ion implanted ZnO thin films deposited by vapor phase transport. The dc electrical resistivity versus temperature curves show that all polycrystalline ZnO films are semiconducting in nature. In the room temperature range they exhibit band conduction and conduction due to thermionic emission of electrons from grain boundaries present in the polycrystalline films. In the low temperature range, nearest neighbor hopping (NNH) and variable range hopping (VRH) conduction are observed. The detailed conduction mechanism of these films and the effects of grain boundary (GB) barriers on the electrical conduction process are discussed. An attempt is made to correlate electrical conduction behavior and previously observed room temperature ferromagnetism of these films.  相似文献   

16.
17.
Electrical and optical properties of thin film of amorphous silicon nanoparticles (a-Si) are studied. Thin film of silicon is synthesized on glass substrate under an ambient gas (Ar) atmosphere using physical vapour condensation system. We have employed Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM) to study the morphology and microstructure of this film. It is observed that this silicon film contains almost spherical nanoparticles with size varying between 10 and 40 nm. The average surface roughness is about 140 nm as evident from the AFM image. X-ray diffraction analysis is also performed. The XRD spectrum does not show any significant peak which indicates the amorphous nature of the film. To understand the electrical transport phenomena, the temperature dependence of dc conductivity for this film is studied over a temperature range of (300-100 K). On the basis of temperature dependence of dc conductivity, it is suggested that the conduction takes place via variable range hopping (VRH). Three-dimensional Mott's variable range hopping (3D VRH) is applied to explain the conduction mechanism for the transport of charge carriers in this system. Various Mott's parameters such as density of states, degree of disorder, hopping distance, hopping energy are estimated. In optical properties, we have studied Fourier transform infra-red spectra and the photoluminescence of this amorphous silicon thin film. It is found that these amorphous silicon nanoparticles exhibits strong Si-O-Si stretching mode at 1060 cm−1, which suggests that the large amount of oxygen is adsorbed on the surface of these a-Si nanoparticles. The photoluminescence observed from these amorphous silicon nanoparticles has been explained with the help of oxygen related surface state mechanism.  相似文献   

18.
X-ray diffraction (XRD), differential scanning calorimeter (DSC), density (d) and dc conductivity (σ) of the glasses in Fe2O3-CaO-P2O5 system were reported. The dc conductivity in the temperature range 303-453 K was measured. The overall features of these XRD curves confirm the amorphous nature of the present samples. The density of glasses increases from 2.750 to 2.892 g/cm3 with increasing Fe2O3 content as a result of a strengthening of cross-linking within glass network. The glass temperature values (Tg) of the present glasses were larger than those of tellurite glasses. This indicates a higher thermal stability of the glass in the present system. The glasses had conductivities ranging from 10−9 to 10−5 Sm−1 at temperatures from 303 to 453 K. Electrical conduction of the glasses was confirmed to be due to non-adiabatic small polaron hopping and the conduction was primarily determined by hopping carrier mobility.  相似文献   

19.
The temperature dependences of the conductivity and the thermoelectric coefficient in TlFeS2 and TlFeSe2 samples have been investigated in the temperature range 85–400 K. The variable-range hopping conduction has been established. It is found that the density of localized states N F near the Fermi level is 1.7×1018 and 3.3×1018 eV?1 cm?3, and the average hopping length R is 109 and 104 Å for TlFeS2 and TlFeSe2, respectively. The non-Arrhenius (activationless) behavior of the hopping conductivity is established in the temperature region T<200 K for TlFeS2 and T<250 K for TlFeSe2.  相似文献   

20.
The X-ray diffraction (XRD), transmission electron microscopy, density, electrical and thermoelectric power (TEP) properties of nanocrystalline Li x V2O5 ? nH2O xerogel films (0 ≤ x ≤ 22 mol.%) were investigated. The films were produced by the sol–gel technique (colloidal route), which was used to enable high-purity, uniform preparation. The relative intensity of the (002) XRD line increased with increasing Li content. The particle size was found to be about 6.0 nm. Electrical conductivity and thermoelectric power were measured parallel to the substrate surface in the temperature range 300–480 K for the as-prepared films. The electrical conductivity showed that all the samples were semiconductors and that conductivity increased with increasing Li content. The conductivity of the present system was primarily determined by hopping carrier mobility, which was found to vary from 6.81 × 10?6 to 0.33 × 10?6 cm2 V?1 s?1 at 380 K. The carrier density was evaluated to be 8.73 × 1019–1.118 × 1021 cm?3. The conduction was confirmed to obey non-adiabatic small polaron hopping. The thermoelectric power, or Seebeck effect, increased with increasing Li content. The results obtained indicate an n-type semiconducting behavior within the temperature range investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号