首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured on the CeSn3 compound, the expansion coefficient between 80 and 800 K at normal pressure, the isothermal compressibility in the 0–8 GPa pressure range at room temperature and the heat capacity at constant pressure in the 60–300 K temperature range. The experimental data were compared with those previously found for the isomorphous LaSn3 phase, assumed as a proper reference material for the study of the intermediate valency states in CeSn3. Both the thermal expansion (3α) and the isothermal compressibility (k) of CeSn3 show behaviours quite different from those of LaSn3: for instance, in the standard conditions, 3α is 55 × 10?6K?1for CeSn3 and 38 × 10?6K?1for LaSn3; k is 15 × 10?12 Pa?1 and 12 × 10?12 Pa?1 respectively for CeSn3 and LaSn3. The thermal behaviour of the molar specific heat at constant pressure of CeSn3 is similar to that of LaSn3 for temperatures lower than 50 K. In the 70–300 K temperature range, the heat capacity of CeSn3 is clearly higher than that of LaSn3, ΔCp being maximum near 150 K. The analysis of the calorimetric data show that the electronic coefficient γ of CeSn3 is temperature dependent: its value varies from 53 mJ K?2 mole?1 at low temperature 24 mJ K?2 mole?1 at 300 K.  相似文献   

2.
The lowest energy gap Eg of AgGaS2 in the temperature range from 4.2 to 300° K was determined from the reflectivity, photoluminescence and absorption measurements. Below ~ 80° K the temperature coefficient of the energy gap is +6 × 10-5eVK. Above ~80° K the sign of the coefficient reverses and the value is -1.8 × 10-4eVK. The positive value is explained with the lattice dilation effect being the dominant mechanism for the energy gap variation at lower temperatures than ~80°K.  相似文献   

3.
The temperature and pressure derivatives of the elastic constants of orthorhombic betaine borate, (CH3)3NCH2COO·H3BO3, have been determined by measuring temperature and stress induced shifts of resonance frequencies of thick plates at ca. 15 MHz in the range between 140 and 300 K and 0 and 3 kbar. The elastic ‘shear’ resistance c44 exhibits a value as low as 0.0492×1010Nm-2at 293 K. With decreasing temperature c44 approaches zero at ca. 142.5 K, indicating an acoustic soft mode behaviour connected with a ferroelastic phase transition. The softening of c44 is described in a good approximation by c44(T)p=0 =alogT/T0 with a=0.0663×1010Nm-2 and T0 = 139.5 K. Further, c44 decreases with increasing pressure according to the linear relation c44(p)T=293 K = 0.0492?0.184×10-4p (p in bar, c44 in 1010 Nm-2). All other elastic constants show a quite normal temperature and pressure dependence. At 293 K the transition is induced by a pressure of 2.65 kbar. The transition temperature Tc depends linearly on pressure according to Tc = 142.5+0.0568 p (pinbar, TcinK). Passing through the transition no discontinuous change of the lattice constants is observed. The three principal coefficients of thermal expansion and the pressure derivatives of the dielectric constants exhibit discontinuities at the transition. The transition is of strongly second order.  相似文献   

4.
The growth of F-centers in LiF irradiated at room temperature with 40- and 85-MeV protons and with 90Sr electrons was found to be proportional to the square root of the absorbed energy over the range 0.5 to 2.3 Mrad which corresponds to an F-center density range of 1 × 1016 to 1.5 × 1017 per cm3. The production efficiency was 5 × 103eV per F-center at an absorbed energy of 2.3 Mrad. The density of F-centers produced in MgF2 by 40- and 85-MeV protons was measured over an absorbed energy range of 0.2 to 29 Mrad which corresponds to a maximum F-center density of 2 × 1016 per cm3. The production efficiency for MgF2 was 4 × 105eV per F-center at an absorbed energy of 16 Mrad.  相似文献   

5.
Slow ion production cross sections for collisions of H+3 and D+3 ions with H2 and D2 have been measured at collision energies between 100 eV and 500 eV. The values vary from 2 × 10-17 cm2 to 6 × 10-17 cm2. The smaller cross sections for D3 projectiles may be explained as an internal energy effect.  相似文献   

6.
The magnetic susceptibility of the garnet-type single crystal Tm3Al5O12 exhibits the typical Van Vleck temperature independent paramagnetism below ≈8 K. The temperature dependence of the susceptibility over the range 2.0-300 K has been analyzed on the assumption that the cubic crystal-electric-field dominates the energy level on 3H6 (J=6) ground multiplet for Tm3+ ion having 12-electrons in 4f shell. The ground state of the 3H6 is nonmagnetic with Γ2 singlet, avoiding the Kramers doublet. The energy separation between Γ2 and the first excited state Γ(2)5 triplet is evaluated to be 68.0 K. The whole energy interval Δ between Γ2 and the highest state Γ1 in 3H6 is estimated to be 339.5 K.  相似文献   

7.
The parallel magnetic susceptibility χ of a uniaxial ferromagnet ErCl3·6H2O has been measured between 0.3 and 4.2K and specially near Tc = 0.353 K. The predominant contribution to the Curie-Weiss temperature is due to the dipolar interactions. χ is proportional to ? with ? =TTc?1 in the range 10?3 < ? < 5 × 10?2. The γ value, γ = 1.01 ±0.03 is consistent with the theoretical prediction for a uniaxial dipolar ferromagnet.  相似文献   

8.
The magnetorestriction constants of CoS2 single crystal were measured by a capacitance method in a temperature range from liquid N2 to the Curie temperatures.The constants γ100 and γ111 are ?1.9 × 10?6 and 5.7 × 10?6 at liquid N2 temperature respectively, and the absolute values of the constants decrease monotonically with the increase of the temperature. The volume magnetorestriction constant δω/δH at 110 K in the ferromagnetic state is 6 × 10?10 Oe?1.  相似文献   

9.
The adsorption/desorption characteristics of CO, O2, and H2 on the Pt(100)-(5 × 20) surface were examined using flash desorption spectroscopy. Subsequent to adsorption at 300 K, CO desorbed from the (5×20) surface in three peaks with binding energies of 28, 31.6 and 33 kcal gmol?1. These states formed differently from those following adsorption on the Pt(100)-(1 × 1) surface, suggesting structural effects on adsorption. Oxygen could be readily adsorbed on the (5×20) surface at temperatures above 500 K and high O2 fluxes up to coverages of 23 of a monolayer with a net sticking probability to ssaturation of ? 10?3. Oxygen adsorption reconstructed the (5 × 20) surface, and several ordered LEED patterns were observed. Upon heating, oxygen desorbed from the surface in two peaks at 676 and 709 K; the lower temperature peak exhibited atrractive lateral interactions evidenced by autocatalytic desorption kinetics. Hydrogen was also found to reconstruct the (5 × 20) surface to the (1 × 1) structure, provided adsorption was performed at 200 K. For all three species, CO, O2, and H2, the surface returned to the (5 × 20) structure only after the adsorbates were completely desorbed from the surface.  相似文献   

10.
The absorption spectra of C6H6 and C6D6 in the liquid phase have been studied near 340 nm. The absorption spectrophotometric mounting was a sequential double-beam attachment with linear response to energy on scanning of the spectrum before the exit slit and an electronic device which gives directly either the absorbance or the integrated absorbance of a transition and, consequently, its oscillator strength.The oscillator strength measured for the band of C6H6 is 8×10?8, which corresponds to a dipole moment of 2.4×10?3 Debye; this value is of the same order as a theoretical value calculated by Tsubomura and Mulliken (3.8×10?3 Debye) for a transition between states 3F and 3A of an oxygen-benzene pair. This agreement corroborates the hypothetical existence of such a transition.The first vibrational band is at 28553 cm?1 for C6H6; this band is not observed in the vapor or solid phase. It corresponds probably to the transition 0-0, which is considered in the literature to be near 29500 cm?1. The isotopic shift measured for this first band is 164 cm?1. The vibrational frequencies are, respectively, 910 cm?1 for C6H6 and 889 cm?1 for C6D6.  相似文献   

11.
We have used the technique of chemical vapour transport to prepare needle shaped single crystal of ZrS3. Results of the measurements of d.c. resistivity. Hall coefficient and thermoelectric power of the temperature range 100–500 K are reported. All the samples exhibited semiconducting behaviour with a room temperature resistivity of about 15 Ω-cm and an activation energy of 0.20±0.02 eV. Room temperature thermoelectric power is -850 μVK?1 and the dominant carriers are electrons. The thermoelectric power varies as (1/T), a behaviour associated with a typical semiconductor. Mobility at low temperatures is limited by ionized impurity scattering and is given by μ1 = 6.5 × 10?2T3/2 cm2V7-1 sec?1. At high temperatures, phonon scattering is dominant and the mobility is given by μ2 = 1.35 × 10+5T?32 cm2V?1 sec?1.  相似文献   

12.
The behaviour of the magnetization, Curie temperature, Mössbauer spectra, and lattice parameter is studied in the garnet series Bi0·8Ca2.χT2·2-2.χFe5-χVχ]O12. The shape of magnetization vs temperature curves shows only a minor dependence on x. The hyperfine field at the octahedral 57Fe nuclei at 5°K decreases linearly with x (12·5kOe per substituted V neighbour), while that at the tetrahedral 57Fe nuclei is not affected. The dependence of the Curie temperatures and hyperfine fields on x is discussed in relation to the Fe-O-V-O-Fe exchange. The influence of Bi substitution is consistent with the idea of a geometric effect.  相似文献   

13.
A method to grow single crystals of ammonium vanadate (IV, V) (NH4)2V3O8 has been devised. The crystal structure is tetragonal P4bm; residual factor is R = 0.030. Cell parameters are a = 8.891 ± 0.004 A? and c = 5.582 + 0.002 A?. The V5+ atom lies at the center of a triangular pyramide (VO4 tetrahedron) while the V4+ atom is on A 4-fold rotation axis at the center of a square-based pyramide VO5 whose symmetry point group is almost C4v with the short V = O bond lying along the 4-fold axis parallel to the c edge of the tetragonal cell. Crystals are thin platlets with (001) cleavage planes. The platlets have very often a square or rectangular shape limited by {100} or {110} planes. Each single crystal was not large enough to record a good e.p.r. spectrum, but by sticking on the same quartz plate a score of them it was possible to gather enough crystals so to record correct spectra and by orienting the plate to obtain resonance lines separately for g = 1.9263 et gτ = 1.9755. Measurements at 283 K on powder samples gave times for spin-spin relaxation T2 = 0.4 × 10?7s and for spin-lattice relaxation T1 = 1.6 × 10?7s. The magnetic structure is characterized by an exchange narrowing ωe = 3 × 1010rad/s which corresponds to a transition temperature of about 0.5 K. Static susceptibility measurements at high magnetic field show a paramagnetic behaviour with an antiferromagnetic interaction which is interpreted in the magnetic space group P2c4bm as the interaction between V4+ ions from consecutive planes parallel to (001).  相似文献   

14.
Magnetic annealing and crystallization kinetics of amorphous ribbons of Fe5Co70Si15B10 were studied. For a toroid stress-relieved at 365°C for 2 h, the anistropy energy Ku obtained by cooling in a magnetic field from 300°C was ≈1.1 × 103erg/cm3 at room temperature. The reorientation of induced anisotropy of this toroid followed the equation for first-order kinetics closely, yielding an activation energy ΔE = 1.9 eV and a pre-exponential frequency factor v0 = 3.2 × 1013s-1. Anisotropy reorientation in a toroid partially stress-relieved at 220°C, although was clearly reversible during 8 cycles of isothermal annealing in tranverse and in longitudinal field, exhibited significant deviations from the equation for first order kinetics. Treating the data in terms of the equation for first order kinetics, a narrow spectrum of activation energy from 1.2 to 1.8 eV, with corresponding frequency factors from 1.8 × 108 s-1 to 5.6 × 1012 s-1, was obtained. The difference in behavior between the two samples is discussed in the light of concepts in structural relaxation recently proposed by T. Egami. Crystallization kinetics was studied on a DSC apparatus, using Kissinger's method. At 10 K/min heating rate, the temperature of incipient crystallization was found to be 770 K. The activation energies found were in the range 4.8–4.2 eV.  相似文献   

15.
We present measurements of the low-field Hall constant RH as a function of field and temperature in the linear-chain metal NbSe3, The data range from 2 K to 200 K in temperature and up to 15 kG in field. At the two phase transitions T1 (142 K) and T2 (58 K) RH shows an abrupt increase in magnitude but no change in sign. Below 30 K RH becomes strongly field dependent. The zero-field-limit RH changes from n-type to p-type at 15 K. It is argued that the results are consistent with a two-band model in which the difference in population p - n is equal to 3 × 1018 cm-3 below T2. The hall data are also consistent with a model in which both a loss of carriers and a drastic change in the conductivity anisotropy occur at T1 and T2 and lend support to the charge-density-wave hypothesis which has been used to characterize the two transitions.  相似文献   

16.
Photoexcitation of EuCl3.6H2O and TbCl3.6H2O mixtures in DMSO at various wavelengths brings about a decrease in the fluorescence intensity of Tb3+ and a subsequent enhancement in the fluorescence intensity of Tb3+ provided that [Tb3+] < [Eu3+]. The average value of the electronic excitation energy transfer rate constant k10 which was found to be independent of the excitation wavelength, was determined to be about 1.50 × 103 M-1 s-1. Photoexcitation of Tb3+ and subsequent population of high energy excited states is accompanied by rapid nonradiative de-excitation processes to the lowest excited state 5D4, which is the origin of the energy transfer process. A lower limit for the value of the reaction rate constant, associated with the transition 5D3 ? 5D4, namely k5, is of the order of 105 ?106 s-1. Excitation at conditions leading to the exclusive population of the 5D4 state of Tb3+ gave rise to a value of k10 equal to (2.2 ± 0.4) × 103 M-1 s-1 and a critical separation (R0)exp between Tb3+ and Eu3+ of about 13 Å. A theoretical value of R0 equal to 14.2 Å was calculated. The energy transfer process does not appear to take place via clear cut dipole-dipole interactions but rather via complex multipole and/or exchange interactions.  相似文献   

17.
The thermal expansion of the a and c axes of lT-TaS2 and of the a axis of 2H-NbSe2 have been measured between 4 K and 360 K. Discontinuities in the lattice parameters of TaS2 were observed at the known charge density wave phase transitions near 200 K and 352 K, and a new transition was found near 283 K. These results are used to estimate the entropy changes occurring at the phase transitions. At the charge density wave onset temperature in NbSe2 we find an upper limit to any discontinuity in the a axis of 2 × 10-7 and to any discontinuity in the expansion coefficient of 3 × 10-7 K-1.  相似文献   

18.
Absorption measurements of single Zn3As2 crystals were made at temperatures 5, 80 and 300 K. Free-carrier absorption is interpreted in the simple classical model. Interband absorption shows contributions from Urbach-like excitations. The direct optical gap has been estimated as 0.99 eV at 300 K, 1.09 eV at 80 K and 1.11 eV at 5 K. The linear dependence of band-gap on temperature was found in the range 80–300 K with dEg/dT = ? 4.55 × 10?4eVK?1.  相似文献   

19.
In this paper for the first time measurements are presented of the transverse Nernst effect, the Righi-Leduc effect and the Maggi-Righi-Leduc effect in cadmium phosphide. The measurements were performed on unoriented Cd3P2 single crystals, with electron concentrations in the range 0.05–1.7 × 1024m?, at 110 and 300 K in magnetic fields up to 1.8 Wbm2. We also measured the room temperature dependence of the zero-field Seebeck coefficient on electron concentration of a large number of undoped and Cu-doped samples. A reversal of sign of the transverse Nernst effect was observed at an electron concentration of about 1.2?1.5 × 1024 m?3. This reversal of sign and the zero-field Seebeck coefficient vs electron concentration for undoped material can be quantitatively described by a Kane-type conduction band with ?g = 0.50 eV, m1e = 0.040 mo and a scattering parameter r = ?1. (Optical phonon scattering, if interpreted in a single mode.) This strongly confirms the results of Radautsan et al. that Cd3P2 has a non-parabolic Kane-type conduction band. The Righi-Leduc and Maggi-Righi-Leduc effect measurements at 110 K on samples with high electron concentrations, yielded Lorenz numbers only half their theoretical values, indicating that the electron scattering contains an inelastic contribution.  相似文献   

20.
The low electric field ohmic resistance R of orthorhombic TaS3 measured at 90 and 120 K well below the Peierls transition temperature depends on the product of a temperature difference ΔT applied along the sample and the sign of a previously applied current pulse if this pulse is larger than threshold for non-ohmic conductivity. This resistance change is about ΔR/RΔT ∽ 1×10-3 K-1 for a pure sample and ΔR/RΔT ∽ 6×10-3 K-1 for a slightly electron irradiated one at 90 K. The relative resistance change is insensitive to the sample length. We deduce that the CDW current changes inhomogeneously the Peierls gap Eg. ΔEg < O at the contact where the CDW current enters and ΔEg > O at the exit. The effect is attributed to a CDW current induced inhomogeneous deformation of the CDW itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号