首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The angular distributions for the 14N(p, 2p)13C reactions at 46 MeV incident proton energy are calculated in the distorted wave t-matrix approximation (DWTA) where approximate optical-model waves are used. A comparison is made between the calculation using a local t-matrix to that of a non-local t-matrix. The (p, 2p) angular distribution is smaller in magnitude where a non-local t-matrix is employed compared to the calculation using a local t-matrix which implies that there is an overall enhancement of absorption associated with the non-local t-matrix. This also implies that differences between the local and non-local off-energy-shell effects can be significant. Parameter studies were undertaken for the distorted waves and bound state wave function and the effects on the angular distributions were similar in the local and non-local cases. The distortion effect due to the final-state focus phase dramatically changes the shape of the angular distribution. The calculations are considered to be a test of the off-energy-shell effects due to non-local interaction. This calculation is also a test of the approximate distorted waves at 46 MeV and the comparison to the 14N(p, 2p)13C data indicates that the distortion is reasonably well described.  相似文献   

2.
《Infrared physics》1989,29(2-4):385-394
Infrared absorption (1.4–2μm) of KZn1−xCoxF3 (0⩽ x<0.15) at 4.2 K has been studied in a magnetic field (B⩽7 T). Large field-induced splittings were observed for Co2+-ion lines. Details of the cobalt concentration dependence of the absorptivity at B = 0 and at field are given along with the dependences on field direction and strength. Assignments are made of the observed Co2+ single-ion and pair transitions. The data has enabled the determination of the infrared (IR) transition g values.  相似文献   

3.
Lineshapes and peak positions of 1s→2p?1, donor transitions in epitaxial GaAs samples of relatively low compensation have been studied as functions of magnetic field by use of photoconductivity measurements. Some of these samples were produced by transmutation doping using thermal neutrons—a method which is useful for the controlled introduction of donor impurities in GaAs. Two new effects, tentatively attributed to van der Waals interactions between neutral donor atoms, are observed: (1) although both Se and Ge donors are introduced by thermal neutron transmutation, the Se line is much broader than the Ge line, and (2) deviations from isolated-donor behavior occur in the magnetic field dependence of the chemical shift of the shallowest donor present. The separation of lines from two deeper donors, Ge and Si, verified the simple phenomenological theory of the magnetic field dependence of central cell corrections of isolated donors up to at least 10T.  相似文献   

4.
In this paper, a non-local field (i.e. the (x, ψ)-field) is constructed by regarding the spinor (ψ) as the internal freedom attached to each point (x). Since this field is likened to a unified field between the (x)- and (ψ)-fields, the metric is given bydσψ=gλ dx λψ. Concerning this, some conformally equivalent relations are considered. Next, Weyl's gauge field is introduced into the concept of connection in order to consider the gauge invariance. Finally, some essential features underlying our non-local field are grasped by formulating some fundamental equations of the spin curvature tensors.  相似文献   

5.
We investigate the post-Newtonian parameter γ and derive its formalism in generalized non-local (GNL) gravity, which is the modified theory of general relativity (GR) obtained by adding a term m 2n?2 R??n R to the Einstein-Hilbert action. Concretely, based on parametrizing the generalized non-local action in which gravity is described by a series of dynamical scalar fields ? i in addition to the metric tensor g μν, the post-Newtonian limit is computed, and the effective gravitational constant as well as the post-Newtonian parameters are directly obtained from the generalized non-local gravity. Moreover, by discussing the values of the parametrized post-Newtonian parameters γ, we can compare our expressions and results with those in Hohmann and Järv et al. (2016), as well as current observational constraints on the values of γ in Will (2006). Hence, we draw restrictions on the nonminimal coupling terms F? around their background values.  相似文献   

6.
A plane wave analysis is given for the free-carrier, microwave magneto-Kerr effect in semiconductors having spherical constant energy surfaces for the case of the applied static magnetic field perpendicular to the propagation direction (Voigt-type Kerr effect). The analysis is in terms of Rv, the complex polarization factor of the reflected wave. The behavior of Rv is considered in detail for low magnetic fields. Multiple-carrier conduction and energy-dependent scattering are shown to give rise to major contributions to Rv. Computer curves for |Rv|vs. μeB, np and ω are presented for parameters corresponding to InSb. Approximate expressions for Rv, which are valid for low magnetic field, high-loss conditions, are given and compared with curves computed from the more complex expressions. Room temperature data for Rv are presented for TE11 waves in a circular waveguide. The dependence of Rv on magnetic flux density is shown for intrinsic InSb. The data are compared with the plane wave predictions. Experimental data for the magneto-Kerr effect are also given for magnetic fields slightly misaligned from the Voigt orientation. An empirical model is introduced which describes these data in terms of data for the Faraday and Voigt orientations of the magnetic field. This model is shown to be of value for alignment of the magnetic field in the Voigt orientation, and for measurement of the Voigt-type Kerr effect in the presence of any small, remaining longitudinal magnetic field component.  相似文献   

7.
In nuclear magnetic resonance of paramagnetic systems, cross-correlations between the fluctuations of a nucleus—nucleus dipole—dipole coupling Ik Il and a nucleus—electron dipole coupling IkS induces cross-relaxation and makes it possible to generate bilinear terms in the density matrix of the type 2Ik xIl z from coherence Ik x that can lead to ‘relaxation-allowed’ coherence transfer between two nuclei Ik and Il . In this paper these effects are demonstrated in a complex involving a fragment of double-stranded DNA and two chromomycin molecules complexing a paramagnetic cobalt ion. Analytical expressions are given for the cross-correlation rates in particular conditions, while the extension to anisotropic g tensors or zero field splittings are addressed. It is shown that relaxation-allowed coherence transfer leads to characteristic signals in double-quantum filtered correlation spectroscopy (DQF—COSY), but not in total correlation spectroscopy (TOCSY). Analytical expressions are unable to reproduce the observed cross-peak patterns. A careful numerical study reveals that in the high spin Co(II) complex studied here, the cross-correlation dynamic shift contribution is of the same order of magnitude as the cross-correlation rate, a value much larger than what can be computed assuming isotropic Brownian motion and complete separation between the electron spin and the lattice.  相似文献   

8.
An anomalous attenuation peak at 95.5°K has been observed for shear ultrasonic waves transmitted along the c-axis of two holmium single crystals. The velocity change across this temperature is on the order of 10?4. In the presence of an external magnetic field, the peak moves toward high temperatures for both Ha and Hc. A rotation of the field in the basal plane produces a two-fold symmetry pattern in the attenuation. A double peak structure centered at the c-plane has also been observed when the field is rotated away from the a-axis. A considerable fraction of the attenuation peak appears to go as sin2 θ where θ is the angle between the shear wave polarization and the external field.  相似文献   

9.
Magnetic rotation spectroscopy signals of the nitric oxide (NO) fundamental band near 5 μm have been observed and compared with calculated signals. This spectroscopic approach exploits magnetic field modulation in the Faraday configuration for very sensitive detection of NO. Line shapes and strengths of the Faraday signals depend on molecular parameters, like J and Ω quantum numbers of the transitions involved, and on experimental parameters, like pressure of the gas sample and applied external magnetic field strength. In this study we implemented a software model which provides a simulation of the complete v=1–0 Faraday spectrum of NO. The algorithm considers the magnetic field modulation, the collisional and Doppler broadening of the line shapes, and the line intensities of 14NO and 15NO fundamental band lines. Optimum values for pressure and magnetic field modulation for maximum sensitivity are given. Suitable spectral windows for simultaneous detection of 14NO and 15NO are discussed. Experimental data were obtained in the wavenumber region from 1840 to 1900 cm?1 by means of a CO sideband laser and a quantum cascade laser. Comparison between calculated and observed signals shows excellent agreement.  相似文献   

10.
We have studied the stability of the electrostatic ion cyclotron wave in a plasma consisting of isotropic hydrogen ions (H+) and temperature-anisotropic positively (O+) and negatively (O) charged oxygen ions, with the electrons drifting parallel to the magnetic field. Analytical expressions have been derived for the frequency and growth/damping rate of ion cyclotron waves around the first harmonic of both hydrogen and oxygen ion gyrofrequencies. We find that the frequencies and growth/damping rates are dependent on the densities and temperatures of all species of ions. A detailed numerical study, for parameters relevant to comet Halley, shows that the growth rate is dependent on the magnitude of the frequency. The ion cyclotron waves are driven by the electron drift parallel to the magnetic field; the temperature anisotropy of the oxygen ions only slightly enhance the growth rates for small values of temperature anisotropies. A simple explanation, in terms of wave exponentiation times, is offered for the absence of electrostatic ion cyclotron waves in the multi-ion plasma of comet Halley.  相似文献   

11.
The melting and growth of3He crystals, spin-polarized by an external magnetic field, are different in nature depending on whether the temperature is higher or lower than the characteristic ordering temperatures in the crystal (the Neel temperatureT N ) and in the liquid (the superfluid transition temperatureT c ). In the high-temperature region (T≥T N ,T c ) the liquid which appears upon melting has a high nonequilibrium spin density. In the low-temperature region (T?T N ,T c ) the melting and growth are accompanied by spin supercurrents both in the liquid and in the crystal in addition to mass supercurrents in the liquid. The crystallization waves at the liquid-solid interface should exist in the low-temperature region. With increasing magnetic field the waves change in nature, because the spin currents begin to play a dominant role. The wave spectrum becomes linear with a velocity inversely proportional to the magnetic field. The attenuation of the waves at low enough temperatures is mainly due to the interaction of the moving crystal-liquid interface with thermal spin waves in the crystal. The waves could be weakly damped at temperatures below a few hundreds microkelvins.  相似文献   

12.
The optical absorption spectrum of Er3+ in ErCrO3 in the phasesΓ 1,Γ 2 andΓ 4 has been studied as a function of temperature and applied magnetic field. The experimental data for the Er3+ ground doublet splitting are analyzed using a single ion molecular field approach. The analysis shows that the Cr — Er interaction is predominantly antisymmetric exchange, the magnetic dipole-dipole interaction being an order of magnitude smaller. The Er — Er interaction is of exchange as well as of dipolar origin.  相似文献   

13.
Perturbed gamma-gamma angular correlation (PAC) technique was used to measure the hyperfine interactions in the intermetallic compound GdPdIn using 111In→ 111Cd and 140La→ 140Ce probe nuclei at the In and Gd sites, respectively. The PAC results for 111Cd show two well-defined electric quadrupole frequencies above T C assigned to probes occupying Gd and In sites, with ~50% of site occupation each. The fraction corresponding to In sites increases with temperature reaching 95% around 500 K. Below T C the measurements for 111Cd probe showed combined electric quadrupole plus magnetic dipole interaction with sharp increase in the magnetic field below around 80 K. A pure magnetic interaction with lower hyperfine field values was observed at the Gd sites occupied by 140Ce below 100 K.  相似文献   

14.
The specific heat of phosphorus doped silicon was measured at temperatures 0.1 < T < 4.2 K in external magnetic fields 0 ≦ Hext ≦ 38 kOe. The phosphorus concentration of the samples ranges from 5.3 × 1017 to 8.9 × 1018cm?3. The magnetic field dependence of the specific heat was observed in the just metallic samples as well as the non-metallic ones. The metal—non-metal transition is discussed on the basis of the Anderson localized states with correlations.  相似文献   

15.
We show that, for the asymptotically strong (super-Schwinger) magnetic field B exceeding the critical value Bcr=m2c3/eh=4.4×1013G, the vacuum polarization effects become important not only in the γ-range, but also for softer electromagnetic quanta, including X-rays and optical photons, and for electromagnetic waves of radio frequencies. This is a consequence of the linearly growing term ?B/Bcr present in the vacuum polarization in an asymptotically strong magnetic field. The results may be essential in studying reflection, refraction, and splitting of X-rays, light and radio waves by magnetic fields of magnetars, and in considering emission of such waves by charged particles.  相似文献   

16.
The peak effect observed in the variation of the critical current as a function of the magnetic field H of periodically inhomogeneous films is observed only below a characteristic temperature T1 given approximately by 2ξ(T1, C) = 2a where 2a is the period of the modulation and C? the mean concentration. We describe the variation of the field values at peak Jc(H) as a function of temperature.  相似文献   

17.
A formulation of QED using only gauge invariant fields acting on a physical state space is discussed. The fields are the electromagnetic tensor Fμν and a non-local electron field ψf depending on a quadruple {fμ} of auxiliary functions. The f-ambiguity is physically meaningful: the fμ contain information on the asymptotic configuration of the electromagnetic field accompanying charged particles. Equations of motion are introduced and solved perturbatively, in the sense that expressions for the Wightman functions of the theory are derived. No information on the commutation relations between the basic fields is needed.  相似文献   

18.
Ferrofluid spin-up flow is studied within a sphere subjected to a uniform rotating magnetic field from two surrounding spherical coils carrying sinusoidally varying currents at right angles and 90° phase difference. Ultrasound velocimetry measurements in a full sphere of ferrofluid shows no measureable flow. There is significant bulk flow in a partially filled sphere (1-14 mm/s) of ferrofluid or a finite height cylinder of ferrofluid with no cover (1-4 mm/s) placed in the spherical coil apparatus. The flow is due to free surface effects and the non-uniform magnetic field associated with the shape demagnetizing effects. Flow is also observed in the fully filled ferrofluid sphere (1-20 mm/s) when the field is made non-uniform by adding a permanent magnet or a DC or AC excited small solenoidal coil. This confirms that a non-uniform magnetic field or a non-uniform distribution of magnetization due to a non-uniform magnetic field are causes of spin-up flow in ferrofluids with no free surface, while tangential magnetic surface stress contributes to flow in the presence of a free surface.Recent work has fitted velocity flow measurements of ferrofluid filled finite height cylinders with no free surface, subjected to uniform rotating magnetic fields, neglecting the container shape effects which cause non-uniform demagnetizing fields, and resulting in much larger non-physical effective values of spin viscosity η′∼10−8−10−12 N s than those obtained from theoretical spin diffusion analysis where η′≤10−18 N s. COMSOL Multiphysics finite element computer simulations of spherical geometry in a uniform rotating magnetic field using non-physically large experimental fit values of spin viscosity η′∼10−8−10−12 N s with a zero spin-velocity boundary condition at the outer wall predicts measureable flow, while simulations setting spin viscosity to zero (η=0) results in negligible flow, in agreement with the ultrasound velocimetry measurements. COMSOL simulations also confirm that a non-uniform rotating magnetic field or a uniform rotating magnetic field with a non-uniform distribution of magnetization due to an external magnet or a current carrying coil can drive a measureable flow in an infinitely long ferrofluid cylinder with zero spin viscosity (η=0).  相似文献   

19.
The electronic spectra of CsCoCl3 are fit to a Hamiltonian that includes terms for interelectron repulsion, octahedral and trigonal crystal fields, and spin-orbit coupling. The fit adequately accounts for both the optical spectrum and the electronic Raman spectrum. The fitted parameters give empirical estimates of the radial expectation values 〈r?1〉 and 〈r?3〉 as well as the charge on the cobalt. The ground state wave functions generated from the fit are used to calculate the following properties: parallel and perpendicular g factors, Co hyperfine field, 59Co quadrupole splitting, anisotropy of magnetic exchange, the magnetic moment of Co2+, and the spin flop field. The agreement between calculated values and observed values for this variety of independently obtained properties is reasonable in all cases.  相似文献   

20.
Shalev Gilad 《Few-Body Systems》2011,50(1-4):451-453
Precision measurements are presented of the proton electric to magnetic form-factors ratios at Q 2?=?0.3 ? 0.8 (GeV/c)2, obtained by polarization-transfer in Hall A of the Jefferson Laboratory. The measured ratios are significantly lower than published values. New global fits to the individual form factors indicate a lower electric form factor and a slightly higher magnetic form factor. The proton charge radius extracted from the new results is somewhat smaller but consistent with previous values obtained from electron?Cproton scattering, and is in significant disagreement with the recent value obtained from muonic hydrogen. The effects of the new results on other quantities are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号