首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic and spectroscopic properties of the planar antiferromagnet K2FeF4 are determined by the Fe2+ ions at tetragonal sites. The two-dimensional easy-plane anisotropy exhibited by K2FeF4 is due to the zero field splitting (ZFS) terms arising from the orbital singlet ground state of Fe2+ ions with the spin S=2. To provide insight into the single-ion magnetic anisotropy of K2FeF4, the crystal field theory and the microscopic spin Hamiltonian (MSH) approach based on the tensor method is adopted. Survey of available experimental data on the crystal field energy levels and free-ion parameters for Fe2+ ions in K2FeF4 and related compounds is carried out to provide input for microscopic modeling of the ZFS parameters and the Zeeman electronic ones. The ZFS parameters are expressed in the extended Stevens notation and include contributions up to the fourth-order using as perturbation the spin-orbit and electronic spin-spin couplings within the tetragonal crystal field states of the ground 5D multiplet. Modeling of the ZFS parameters and the Zeeman electronic ones is carried out. Variation of these parameters is studied taking into account reasonable ranges of the microscopic ones, i.e. the spin-orbit and spin-spin coupling constants, and the energy level splittings, suitable for Fe2+ ions in K2FeF4 and Fe2+:K2ZnF4. Conversions between the ZFS parameters in the extended Stevens notation and the conventional ones are considered to enable comparison with the data of others. Comparative analysis of the MSH formulas derived earlier and our more complete ones indicates the importance of terms omitted earlier as well as the fourth-order ZFS parameters and the spin-spin coupling related contributions. The results may be useful also for Fe2+ ions at axial symmetry sites in related systems, i.e. Fe:K2MnF4, Rb2Co1−xFexF4, Fe2+:Rb2CrCl4, and Fe2+:Rb2ZnCl4.  相似文献   

2.
A new Fe(III) fluoride N2H6FeF5 has been investigated by magnetic susceptibility measurements and Mössbauer resonance. It has a one-dimensional magnetic behaviour. The intrachain exchange integral (Jk = -10.2 K) has been determined by fitting the χ-1 = f(T) curve and the ratio between the inter- and intrachain exchange integrals evaluated with Oguchi's formula. Below TN = 9 K, N2H6FeF5 shows a long range three-dimensional anti-ferromagnetic ordering.  相似文献   

3.
The nature of the magnetic interactions in the chain compound Rb2FeF5 has been investigated using neutron diffraction and magnetic measurements under high applied fields. Rb2FeF5 orders antiferromagnetically at TN = 8.0 ± 0.5 K; the magnetic structure is of the AZ + GX mode and the moment of the Fe3+ ion extrapoled to 0K is 3.5 ± 0.2 μB, this low value being due to zero-point spin reduction. Within a chain the Fe3+ ions are antiferromagnetically coupled with an exchange constant of J/k = ?8.8 K. A spin-flop behavior has been observed and interpreted on the basis of the molecular field theory. The critical field was found to be HC = 65 kOe at 1.7 K.  相似文献   

4.
Below TN, the site symmetry at the Mn2+ ion is centrosymmetric (Rb2MnCl4) and non-centrosymmetric (Rb3Mn2Cl7) respectively. As a result, one expects the appearance of magnetic dipole or electric dipole exciton origins in the optical spectra. These were clearly seen via polarized absorption and magnetic circular dichroism measurements through the 4T2(D) band. The zone edge magnon frequencies are found to be 80 cm?1 (Rb2MnCl4) and 90 cm?1 (Rb3MnCl2in7). The two compounds are also easily distinguished through their room temperature axial absorption (4T2 (G) band) and Raman spectra. Low temperature data indicate that the tetragonal field plays an important role.  相似文献   

5.
Dielectric and thermocurrent measurements have been carried out on (NH4) 3AlF6 and (NH4) 3FeF6 ceramic samples. A maximum of permittivity is observed close to the transition temperature (TT(NH4) 3AlF6 = 217K; TT(NH43FeF6 = 264K. In the low-temperature phase a polarization current of about 10-9A is obtained and can be reversed when the sign of the polarization field is changed, a property which could correspond to a ferroelectric behavior. However, no pyroelectric current is detected when the temperature decreases from TT. Another hypothesis, based on a field-induced polarization, has been considered : the depolarization current could be due to charge displacements from potential minima favored by rising temperature. In any way, the low-temperature phase is characterized by a remanent polarization.  相似文献   

6.
The 2D-antiferromagnetism of tetragonal Ba2NiF6 and Ba2FeF6 — whose structure derives from that of K2NiF4 — has been studied by magnetization measurements and by powder neutron diffraction. The magnetic cell is 2a, 2a,c and the magnetic moments (μNi2+ = 1.9μB and μFe2+ = 3.46μB) lie along c. This has been confirmed by Mossbauer spectroscopy for Ba2FeF6.  相似文献   

7.
The photoluminescence of K4UO2(CO3)3 has been studied under conditions of high resolution at cryogenic temperatures. The origin corresponding to the pure electronic transition was located at 4774 Å (20945 cm-1), and it was found that the totally symmetric uranyl stretching mode was coupled to this transition. A progression of four band systems thus resulted, and from an examination of the energies of corresponding peaks in each system, a value of 813 cm-1 for the U-O stretching mode was determined. Two lattice modes (34 and 80 cm-1) and two molecular vibrational modes (205 and 276 cm-1) were also found to couple with the pure electronic transition, thus yielding approximately 15 major peaks in each band system. The 205 cm-1 vibration corresponded to a CO2-3 vibration, while the 276 cm-1 vibration was a UO2+2 deformation. The low values obtained for the force constant and totally symmetric stretching frequency of the U-O bond suggested that in UO2(CO)4-3, the uranium atom is bound in a complex species that may be considered as an intermediate between that of a uranyl (UO2+2) and a uranate (UO10-8) ion.  相似文献   

8.
The defect (Mn2+,Ni2+,Fe2+) induced magnon gap modes in the layered antiferromagnets K2CoF4 and Rb2CoF4 were investigated with the methods of FIR absorption-and IR emission spectroscopy. The anisotropic exchange-parameters describing the strongly localized Mn2+ spin excitations far below the host lattice magnon band and the Ni2+ excitations in the vacinity of this band are presented. In the diluted system K2Co1-cMncF4 localized Mn2+ cluster modes up to about C≈0.1 were observed. The excitation energy of these modes can only be explained by assuming an anisotropic Mn2+-Mn2+ exchange which is in contrast to the pure isomorphous system K2MnF4. In the spin mismatch system K2CoF4: Fe the magnetic moments of the isolated Fe2+ impurities are pulled from the plane perpendicular to the c-axis and aligned parallel to the easy axis of the magnetic crystal.  相似文献   

9.
The spectrum of spin-waves in two-dimensional antiferromagnet of the K2FeF4 type is calculated taking into account the total single-ion anisotropy and lattice distortions. The formulas for the AFMR frequencies are obtained and it is shown that the observed values cannot agree with theoretical ones without deformations being taken into account. The temperature dependence of strain tensor is found in the region of the spin- wave approximation validity.  相似文献   

10.
Four one-phonon Raman lines have been found in CdIn2S4 (ZnIn2S4) spinels at 92 (72) cm-1, 186 (184) cm-1, 246 (253) cm-1, and 367 (372) cm-1 for incident photon energies well below the energy gap EG ~ 2.4 (2.2) eV at 300 K. For photon energies close to EG, the 367 cm-1 mode underwent a resonant enhancement in CdIn2S4 and four infrared active but Raman forbidden F1u modes appeared in the CdIn2S4 and ZnIn2S4 Raman spectra: TO modes at 226 (221) cm-1 and 309 (312) cm-1, and LO modes at 274 (272) cm-1 and 340 (342) cm-1.  相似文献   

11.
A high-resolution (0.002 cm−1) infrared absorption spectrum of methylene fluoride-d2 (CD2F2) of the lowest fundamental mode ν4 in the region from 460 to 610 cm−1 has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 3500 transitions have been assigned in this B-type band centered at 521.9 cm−1. The data have been combined with upper state pure rotational measurements in a weighted least-squares fit to obtain molecular constants for the upper state resulting in an overall standard deviation of 0.00018 cm−1. Accurate value for the band origin (521.9578036 cm−1) has been obtained and inclusion of transitions with very high J (?60) and Ka (?34) values has resulted in improved precision for sextic centrifugal distortion constants, in particular DK, HKJ, and HK.  相似文献   

12.
Peaks in the FeF3 phonon Raman spectrum are assigned to the A1g(312 cm-1) and Eg(105, 187, 450 cm-1) representations of the D63d group. Anomalous temperature dependence of the frequency, intensity and line width of the 187 cm-1 line has been observed.  相似文献   

13.
新型激光晶体Yb:KY(WO4)2的结构与光谱   总被引:1,自引:0,他引:1       下载免费PDF全文
王英伟  王自东  程灏波 《物理学报》2006,55(9):4803-4808
采用顶部籽晶提拉法,以K2W2O7为助溶剂,生长了Yb:KY(WO4)2新型激光晶体.经热重-差热分析,确定晶体熔点为1045℃,相变温度为1010℃.X射线粉末衍射测试,验证所生长的晶体为β-Yb:KY(WO4)2.晶体结构分析确定Yb:KY(WO4)2晶体由WO6八面体连接而成,WO6八面体是由双氧桥(WOOW)及单氧桥(WOW)构成.晶体粉末样品室温下的红外及拉曼光谱测试,确定WO6原子基团、双氧桥及单氧桥的振动频率.晶体的吸收峰位于940nm,980nm,发射峰位于989nm—1030nm. 关键词: 晶体结构 光谱 晶体生长  相似文献   

14.
Thermal behavior of such fundamental physical properties as polarization, pyroelectric current, dielectric constant and paramagnetic susceptibility are reported for dilithium heptamolybdotetragadolinate, Li2Gd4 (MoO4)7. The ferroelectric transition point has been determined by various methods and the results compared. The most reliable value of the Curie point has been obtained by the measurement of differential magnetic susceptibility as a function of temperature and is found to be 52±2°C. The room temperature values for the relative dielectric constant and paramagnetic susceptibility are 51.5 and 59.8 x 10-6 cm3. g-1, respectively. From the susceptibility measurements the values obtained for the Curie constant, C, and the paramagnetic Curie point, θp, are 1.79 x 10-2 cm3 . g-1 . deg and 247°K, respectively. It is believed that Li2Gd4 (MoO4)7 could be antiferromagnetic between 273 and 325°K.  相似文献   

15.
The absorption spectrum of Ni2+ doped in Cs2Mg(SO4)2 · 6H2O single crystals has been studied at room and liquid nitrogen temperatures in the range 7000–34000 cm?1. The observed spectrum is satisfactorily interpreted in terms of cubic ligand field model including spin-orbit coulping. The ligand field parameters evaluated to best fit the observed spectrum are B = 955 cm?1, C = 3572 cm?1, Dq = 910 cm?1 and ξ = 550 cm?1. The non-ligand field band observed at 77K has been interpreted to be the superposition of vabrational mode of SO42? radical on 3T1g(F) band.  相似文献   

16.
The sublattice magnetization of the quadratic-layer basal-plane antiferromagnet K2FeF4 has been studied by use of Mössbauer spectroscopy. A distribution of Néel temperatures with a width ~3 K is found at a mean TN = 67.2±0.3 K. For 0.3 < T/TN < 0.99 the sublattice magnetization is described by a power law with critical exponent β = 0.17±0.01.  相似文献   

17.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives rms = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

18.
In previous work we have observed the amplitude mode of the charge density wave (CDW) in K2Pt(CN)4Br0.3?3.2H2O (KCP) by means of Raman scattering. New measurements made on deuterated material, K2Pt(CN)4Br0.3?3.2D2O (KCP1), show the same mode but shifted from 44 to 38 cm?1, maintaining the symmetry properties and temperature dependence of frequency and linewidth. This considerable isotope effect is interpreted in terms of a coupling of the CDW with the water stretching mode, which by the deuteration is shifted from 3494 cm?1 in KCP to 2560 cm?1 in KCP1 according to the change in atomic mass. Both of these modes exhibit A1(z) symmetry. At 5 K the resulting decoupled frequency of the CDW amplitude mode is 57 cm?1, and the coupling energy about 140 cm?1. A discussion of the temperature dependence of various important quantities is given. The present results show that the water molecules, which are located in between the Pt chains are strongly involved in the eigenvector of the CDW amplitude mode.  相似文献   

19.
Raman scattering experiments on K2Pt(CN)4Br0.3 · 3H2O are reported between 5 and 300 K as a function of temperature. A line of A1 symmetry detected at 44 cm?1 shows interesting temperature dependent properties. It is concluded from a comparison of the frequency, symmetry, and scattering intensity of this line with theoretical predictions that the excitation concerned represents the amplitude mode of the charge density wave (the line observed in infrared absorption being the phase mode). No Peierls transition is observed, but the results are consistent with a Peierls distortion present at all temperatures. The findings are correlated with inelastic neutron scattering and infrared studies. Finally, the CN stretching modes at 2189 and 2173 cm?1 and the water mode at 3490 cm?1 are studied as a function of temperature.  相似文献   

20.
The transitions between the low lying crystal field split states A1g and B1g of the Fe2+ ions in pure FeF2 and in the mixed antiferromagnet Fe1-xMnxF2 have been investigated with Raman light scattering. From the Raman polarization rules the lines have been identified as arising from the magnetic excitons associated with the transitions. The energy and the line-width of the strongest line are studied as a function of the concentration x. From the energy measurement we estimate that the single ion anisotropy parameter D of the Fe2+ ions varies from 6.46 cm-1 in pure FeF2 to 8.03 cm-1 in MnF2: Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号