首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Methanol is a promising fuel for power devices such as fuel cells because it has a high theoretical capacity per volume and weight, is relatively easy to handle and is easy to store. Many studies on the alkaline methanol fuel cell system were made in the 1960s and 1970s. The article gives a brief summary of these studies and shows some results of the new work started recently at the TU Graz, AustriaDedicated to Prof. Wolf Vielstich on the occasion of his 80th birthday in recogniton of his numerous contributions to interfacial electrochemistry.  相似文献   

2.
Aprotic rechargeable lithium–air batteries(LABs) with an ultrahigh theoretical energy density(3,500 Wh kg-1) are known as the‘holy grail’ of energy storage systems and could replace Li-ion batteries as the next-generation high-capacity batteries if a practical device could be realized. However, only a few researches focus on the battery performance and reactions in the ambient air environment, which is a major obstacle to promote the practical application of LABs. Here, we have summar...  相似文献   

3.
The main interfacial physico-chemical characteristics and the kinetics of the formation of protein and emulsifier mixed films at the air–water interface are reviewed. Recent advances include the development of new molecular resolution and spectroscopic techniques coupled with surface rheological instruments and the incipient development of computer simulation of the displacement of proteins by emulsifiers.  相似文献   

4.
Flexible electrode architectures based on non-functionalized (P2) and functionalized (P3) single-walled carbon nanotubes (SWNTs) were fabricated via a simple vacuum filtration process. A hybrid layer of various compositions of P2- and P3-SWNTs forms free-standing membranes (~80 μm in thickness), and their electrochemical performance was evaluated as an air electrode AEP2/P3 in zinc–air batteries. Such bifunctionalized air electrodes showed uniform surface morphology with interconnected micron-sized porous structure with high porosity (~70%). The N2 adsorption isotherms at 77 K are of type IV with BET-specific surface areas of AE(60/40) and AE(80/20) to be 130.54 and 158.76 m2 g−1, respectively, thus facilitates high active surface area for active oxygen reduction/evolution reactions. BJH pore size distribution of AE(60/40) and AE(80/20) shows maximum pores with diameter <15 nm. The zigzag interlaying of the SWNTs imparts mechanical stability and flexibility in zinc–air batteries. Zinc–air batteries with optimized compositions of P2- and P3-SWNTs in air electrode AE(60/40) had ionic conductivity ~1 × 10−2 S cm−1 and delivered higher discharge capacity ~300 mAh g−1 as compared to AE(80/20) composition. The unique properties of AE(P2/P3) studied in this work would enable flexible air electrode architectures in future metal–air batteries.  相似文献   

5.
Monolayer formation, of γ-globulin at the air–water interface has been investigated under varying subphase compositions. At pH 7.4, it is found that a stable monolayer is obtained only when the ionic strength is greater than 0.5 M. The magnitude of the collapse pressure increases with increasing ionic strength of the subphase. These data are analyzed in comparison to the literature data. Received: 2 March 1999 Accepted in revised form: 16 June 1999  相似文献   

6.
A sulfonate (2,4-sodium dissulfonate-5-n-pentadecylphenol) was synthesized from hydrogenated cardanol and the micellization study was carried out using temperature and electrolyte concentration as variables. The adsorption parameters were obtained using surface tension data by the Frumkin adsorption model and the Simplex Nelder–Mead method. Values of critical micelle concentration (cmc) and surface excess (Γ) were obtained in three different temperatures (303 K, 313 K, and 323 K) and two electrolyte concentrations (NaCl solution—0.1 M and 0.25 M). It was verified that cmc decreased with increasing electrolyte concentration and temperature. The Gibbs free energy showed that the micellization process was spontaneous for all studied systems and temperatures, and also that the presence of several CH2 groups was significant for micelle formation.  相似文献   

7.
Flexible zinc–air batteries attract more attention due to their high energy density, safety, environmental protection, and low cost. However, the traditional aqueous electrolyte has the disadvantages of leakage and water evaporation, which cannot meet application demand of flexible zinc–air batteries. Hydrogels possessing good conductivity and mechanical properties become a candidate as the electrolytes of flexible zinc–air batteries. In this work, advances in aspects of conductivity, mechanical toughness, environmental adaptability, and interfacial compatibility of hydrogel electrolytes for flexible zinc–air batteries are investigated. First, the additives to improve conductivity of hydrogel electrolytes are summarized. Second, the measures to enhance the mechanical properties of hydrogels are taken by way of structure optimization and composition modification. Third, the environmental adaptability of hydrogel electrolytes is listed in terms of temperature, humidity, and air composition. Fourth, the compatibility of electrolyte–electrode interface is discussed from physical properties of hydrogels. Finally, the prospect for development and application of hydrogels is put forward.  相似文献   

8.
The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2′-palmitoyluridin und 3′-palmitoyluridin, forms Langmuir monolayers and Langmuir–Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV–vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties.  相似文献   

9.
Designing a highly active-and stable non-noble metal bifunctional oxygen catalyst for rechargeable Znair battery remains a great challenge. Herein, we develop a facile and melamine-assisted-pyrolysis(MAP)strategy for the synthesis of core–shell Co-based electrocatalysts@N-doped carbon nanotubes(Co@CNTs)derived from metal–organic frameworks. The Co@CNTs exhibited excellent bifunctional electrocatalytic performance for both oxygen evolution and reduction. DFT calculations demonstrated that the Gibbs free energy of the rate-determining step was small enough to improve ORR activities. As a result, a Zn-air battery assembled with Co@CNTs proves a lager power density, low voltage gap between charge–discharge and excellent stability. Thus, this work offers a facile strategy to realize the synthesis of non-noble metal electrocatalyst for Zn-air battery materials with high electrochemical performance.  相似文献   

10.
《Mendeleev Communications》2023,33(4):574-576
The ignition temperatures and effective activation energies of the ignition limits of mixtures (40–70% H2 + 60–30% CH4)stoich + air over Rh were experimentally determined at a pressure of 1 atm in the temperature range 20–300 °C. Over an ignition-treated Rh surface, the ignition temperature of a mixture of 70% H2 + 30% methane + air is 62 °C. This indicates the potential of using Rh to markedly lower the ignition temperature of fuels based on hydrogen–methane mixtures.  相似文献   

11.
Infrared and Raman spectroscopies are now currently used to obtain molecular information (orientation, conformation, organization) on monolayers at the air–water interface. In the past year, several original studies were performed on peptides and proteins and their interaction with phospholipidic monolayers.  相似文献   

12.
The interfacial behaviour of Cratylia mollis (Cra) at the air/water interface and its penetrant ability into spread phospholipid monolayers (Lipoid E80 and Epicuron 200) has been monitored by surface tension measurements. The first-order rate constants defining adsorption and rearrangement obtained from surface tension kinetics data reveal that Cra is a rather stable protein which exhibits characteristic protein adsorption patterns in which the breaking points separating diffusion–penetration and rearrangement profiles could have been easily distinguished. The penetration of Cra into Lipoid E80 and Epicuron 200 phospholipid monolayers has been inferred in terms of penetration pressure increments (ΔΠ) versus time relationships. The data clearly showed that penetrant ability of the lectin was, to a large extent, dependent on monolayer compressibilities. Thus, for Lipoid E80, which contained a rather high percentage of phosphatidylethanolamine (DPPE) in the mixture with phosphatidylcholine (DPPC), penetration of Cra at the high monolayer compression (20 mN m−1) was lower than that observed for Epicuron 200, which did not contain DPPE. Indeed, in the middle of the Π-A isotherm, DPPE was markedly less compressible than DPPC. However, at the low monolayer surface coverage (3 mN m−1), the rates of Cra penetration into both Lipoid E80 and Epicuron 200, although much higher for the latter at the beginning of adsorption, yielded similar limiting values of ΔΠ. This has been attributed to the occurrence of a hydrophobic interaction between the lectin and hydrophobic phospholipid chains that have the same length for both Lipoid E80 and Epicuron 200.  相似文献   

13.
Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm–2 and the power density of 160 mW cm–2 are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst.  相似文献   

14.
In this article, a special phenomenon of secondary ignition, which is caused when a gasoline–air mixture comes in contact with a local heat source after the first explosion or fire in a confined tunnel, is studied through experiments carried out in a cylinder tunnel with a solid heating device. Based on the analysis of the experimental results of secondary thermal ignition in the confined tunnel, the mode, critical ignition temperature, and critical concentration of the secondary thermal ignition’s occurrence of the gasoline–air mixture in the confined tunnel are discussed. The results indicate that the mode of secondary thermal ignition of gasoline–air mixture in the confined tunnel includes burning, slow deflagration, and rapid deflagration. Compared to the first thermal ignition, the burning intensity of the secondary thermal ignition is stronger and the ignition delay is much shorter. The relationship between critical ignition temperature and gas mixture temperature follows a cubic polynomial. Experiments also indicate that whether the secondary thermal ignition occur or not is determined by critical gasoline vapor and oxygen concentration even if the temperature is maintained in a reasonable scope. When the concentration of the gas vapor is as low as 0.45 % and the oxygen as low as 10.4 %, the secondary thermal ignition still can be triggered.  相似文献   

15.
The surface properties of mixed system containing gemini anionic surfactant 1,2,3,4-butanetetracarboxylic sodium, 2,3-didodecyl ester and partly hydrolyzed polyacrylamide were investigated by surface tension measurements and oscillating bubble methods. The influences of surfactant concentration, dilational frequency, temperature, pH, as well as salts on dilational modulus were explored. Meanwhile, the interfacial tension relaxation method was employed to obtain the characteristic time of surface relaxation process. The polymers play important roles in changing the interfacial properties especially at lower surfactant concentration. The possible mechanism of the polymer in changing the interfacial properties is proposed. Both the hydrophobic and electrostatic interaction among the surfactants and polymers dominate the surface properties of mixed system. These dynamic properties are of fundamental interest in understanding the structure of adsorption layers, dynamics of surfactant molecules, and their interaction with polymers at the surface.  相似文献   

16.
Some surfactants tend to form ultrathin films at the surface of water or at the interface between oil and water. A representative of these surface-active compounds is SPAN 65 (trioctadecanyl ester of sorbic acid). Induced by attractive interactions these molecules can self-associate to form temporary networks. At the planar surface we measured the two-dimensional relaxation modulus, the storage modulus, the loss modulus and the relaxation spectrum. In addition to these measurements, we have also investigated the molecular structure of these networks with “Brewster-angle-microscopy”. The results indicate that temporary cross-linking points, which have lifetimes of the order of a few seconds, tend to stabilize these films. This dynamic network formation is also interesting for numerous technical applications, and it might be used for the preparation of emulsions, foams or microcapsules. Received: 23 October 2000 Accepted: 3 November 2000  相似文献   

17.
In this paper, we present the development of flexible zinc–air battery. Multiwalled carbon nanotubes(MWCNTs) were added into electrodes to improve their performance. It was found that MWCNTs were effective conductive additive in anode as they bridged the zinc particles. Poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS) was applied as a co-binder to enhance both the conductivity and flexibility. A poly(acrylic acid)(PAA) and polyvinyl alcohol(PVA) coated paper separator was used to enhance the battery performance where the PVP–PAA layer facilitated electrolyte storage. The batteries remained functional under bending conditions and after bending. Multiple design optimizations were also carried out for storage and performance purposes.  相似文献   

18.
The surface organization of enol units of polyacryloylacetone (PAA) and polyethylacrylacetate (PEAA) monolayers at the air–water interface is examined using surface pressure, surface potential and rheological measurements and theoretical calculations based on molecular models. The mechanism and kinetics of the photochemical enol–keto tautomerization of PAA and PEAA polymers organized in a monolayer of closely packed monomer units are studied by measuring the surface area increase at constant surface pressure. The results indicate an increase in the area per unit during the consecutive enol-to-keto photoconversion and the slow interfacial reorganization of these ¶forms to a more favourable state.  相似文献   

19.
The adsorption of sodium dodecyl sulfate (SDS) and n-dodecanol from aqueous solutions of the pure and mixed surfactants at the air–water surface is studied by equilibrium surface pressure measurements, surface pressure transients and Brewster angle microscopy. The adsorption layers of SDS and n-dodecanol show fundamental differences in the phase behaviour. The adsorption parameters of both components are determined. Under appropriate conditions, a phase transition at which condensed phase textures are formed, occurs in the adsorption layers of n-dodecanol. The adsorption layers of surface-chemically purified SDS exist only in a fluid-like state without a phase transition under formation of condensed phase domains. Coadsorption of both surfactants is only investigated in the range of trace amounts of n-dodecanol. Depending on the mixing ratio and the system conditions (bulk concentration, temperature), a phase transition can or cannot occur. At absence of a phase transition, comparable surface concentrations of both components are calculated based on a orthogonal collocation solution for a two-component system. The adsorption properties are completely different when a phase transition occurs. Condensed phase domains of n-dodecanol formed, after the phase transition point, grow finally to a homogeneous condensed phase which replaces completely SDS.  相似文献   

20.
A method and apparatus for measuring the relationship between air–water capillary pressure and water saturation in PEMFC gas diffusion layers is described. Capillary pressure data for water injection and withdrawal from typical GDL materials are obtained, which demonstrate permanent hysteresis between water intrusion and water withdrawal. Capillary pressure, defined as the difference between the water and gas pressures at equilibrium, is positive during water injection and negative during water withdrawal. The results contribute to the understanding of liquid water behavior in GDL materials which is necessary for the development of effective PEMFC water management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号