首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Prion‐like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau–HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3‐O‐sulfation (3‐O‐S) of HS significantly enhances tau binding. In Hs3st1?/? (HS 3‐O‐sulfotransferase‐1 knockout) cells, reduced 3‐O‐S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3‐O‐S HS 12‐mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3‐O‐S binding sites to the microtubule binding repeat 2 (R2) and proline‐rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3‐O‐sulfation. Our work demonstrates that this rare 3‐O‐sulfation enhances tau–HS binding and likely the transcellular spread of tau, providing a novel target for disease‐modifying treatment of AD and other tauopathies.  相似文献   

2.
Based on the structure of the regular heparin, we have prepared a smart library of heparin‐like trisaccharides by incorporating some sulfate groups in the sequence α‐D ‐GlcNS‐ (1‐4)‐α‐L ‐Ido2S‐(1‐4)‐α‐D ‐GlcN. According to the 3D structure of heparin, which features one helix turn every four residues, this fragment corresponds to the minimum binding motif. We have performed a complete NMR study and found that the trisaccharides have a similar 3D structure to regular heparin itself, but their spectral properties are such that allow to extract very detailed information about distances and coupling constants as they are isotropic molecules. The characteristic conformational equilibrium of the central iduronate ring has been analyzed combining NMR and molecular dynamics and the populations of the conformers of the central iduronate ring have been calculated. We have found that in those compounds lacking the sulfate group at position 6 of the reducing end glucosamine, the population of 2S0 of the central iduronate residue is sensitive to the temperature decreasing to 19 % at 278 K. On the contrary, the trisaccharides with 6‐O‐sulfate in the reducing end glucosamine keep the level of population constant with temperature circa 40 % of 2S0 similar to that observed at room temperature. Another structural feature that has been revealed through this analysis is the larger flexibility of the L ‐IdoAS‐ D ‐GlcN glycosidic linkage, compared with the D ‐GlcNS‐L ‐IdoA. We propose that this is the point where the heparin chain is bended to form structures far from the regular helix known as kink that have been proposed to play an important role in the specificity of the heparin–protein interaction.  相似文献   

3.
The conformational behavior of 2‐O‐ and 4‐O‐sulfated derivatives of linear (1→3)‐linked di‐, tri‐, and tetrafucosides and 2,3‐branched tetrafucoside was studied by means of theoretical molecular modeling and experimental determination of trans‐glycosidic vicinal coupling constants 3JC,H. It was shown that O‐sulfation of (1→3)‐linked oligofucosides restricts their conformational flexibility and changes the conformational equilibrium if compared with the parent nonsulfated oligosaccharides. In the case of 2‐O‐sulfated oligofucosides, the conformations of O‐glycoside linkages depend on its location within the oligosaccharide chain and the chain length as well as on the presence of a 2,3‐branch, whereas the conformation of the (1→3)‐linkage in the presence of a 4‐O‐sulfate group only depends on the presence of a 2,3‐branch.  相似文献   

4.
Heparan sulfate (HS) has multifaceted biological activities. To date, no libraries of HS oligosaccharides bearing systematically varied sulfation structures are available owing to the challenges in synthesizing a large number of HS oligosaccharides. To overcome the obstacles and expedite the synthesis, a divergent approach was designed, where 64 HS tetrasaccharides covering all possible structures of 2-O-, 6-O- and N-sulfation with the glucosamine-glucuronic acid-glucosamine-iduronic acid backbone were successfully produced from a single strategically protected tetrasaccharide intermediate. This extensive library helped identify the structural requirements for HS sequences to have strong fibroblast growth factor-2 binding but a weak affinity for platelet factor-4. Such a strategy to separate out these two interactions could lead to new HS-based potential therapeutics without the dangerous adverse effect of heparin-induced thrombocytopenia.  相似文献   

5.
Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the ‘open’ conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.  相似文献   

6.
A chemoenzymatic approach has been developed for the preparation of diverse libraries of heparan sulfate (HS) oligosaccharides. It employs chemically synthesized oligosaccharides having a chemical entity at a GlcN residue, which in unanticipated manners influences the site of modification by NST, C5‐Epi/2‐OST and 6‐OST1/6‐OST3, thus resulting in oligosaccharides differing in N/O‐sulfation and epimerization pattern. The enzymatic transformations defined fine substrate requirements of NST, C5‐Epi, 2‐OST, and 6‐OST.  相似文献   

7.
Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO(3)) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO(3) loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO(3) from N-sulfate was energetically favored by 3-8?kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.  相似文献   

8.
Elucidation of physicochemical mechanisms of enzymatic processes is one of the main tasks of modern biology. High efficiency and selectivity of enzymatic catalysis are mostly ensured by conformational dynamics of enzymes and substrates. Here, we applied a stopped-flow kinetic analysis based on fluorescent spectroscopy to investigate mechanisms of conformational transformations during the removal of alkylated bases from DNA by ALKBH2, a human homolog of Escherichia coli AlkB dioxygenase. This enzyme protects genomic DNA against various alkyl lesions through a sophisticated catalytic mechanism supported by a cofactor (Fe(II)), a cosubstrate (2-oxoglutarate), and O2. We present here a comparative study of conformational dynamics in complexes of the ALKBH2 protein with double-stranded DNA substrates containing N1-methyladenine, N3-methylcytosine, or 1,N6-ethenoadenine. By means of fluorescent labels of different types, simultaneous detection of conformational transitions in the protein globule and DNA substrate molecule was performed. Fitting of the kinetic curves by a nonlinear-regression method yielded a molecular mechanism and rate constants of its individual steps. The results shed light on overall conformational dynamics of ALKBH2 and damaged DNA during the catalytic cycle.  相似文献   

9.
Determination of the structure of heparin-derived oligosaccharides by 1H NMR is challenging because resonances for all but the anomeric protons cover less than 2 ppm. By taking advantage of increased dispersion of resonances for the anomeric H1 protons at low pD and the superior resolution of band-selective, homonuclear-decoupled (BASHD) two-dimensional 1H NMR, the primary structure of the heparin-derived octasaccharide ∆UA(2S)-[(1 → 4)-GlcNS(6S)-(1 → 4)-IdoA(2S)-]3-(1 → 4)-GlcNS(6S) has been determined, where ∆UA(2S) is 2-O-sulfated ∆4,5-unsaturated uronic acid, GlcNS(6S) is 6-O-sulfated, N-sulfated β-d-glucosamine and IdoA(2S) is 2-O-sulfated α-l-iduronic acid. The spectrum was assigned, and the sites of N- and O-sulfation and the conformation of each uronic acid residue were established, with chemical shift data obtained from BASHD-TOCSY spectra, while the sequence of the monosaccharide residues in the octasaccharide was determined from inter-residue NOEs in BASHD-NOESY spectra. Acid dissociation constants were determined for each carboxylic acid group of the octasaccharide, as well as for related tetra- and hexasaccharides, from chemical shift–pD titration curves. Chemical shift–pD titration curves were obtained for each carboxylic acid group from sub-spectra taken from BASHD-TOCSY spectra that were measured as a function of pD. The pK As of the carboxylic acid groups of the ∆UA(2S) residues are less than those of the IdoA(2S) residues, and the pK As of the carboxylic acid groups of the IdoA(2S) residues for a given oligosaccharide are similar in magnitude. Relative acidities of the carboxylic acid groups of each oligosaccharide were calculated from chemical shift data by a pH-independent method.  相似文献   

10.
Heparan sulfate (HS) represents a major class of glycans that perform central physiological functions. Emerging HS and glycosaminoglycan microarray techniques are used to interrogate the structure and function relationship to develop novel therapeutic agents. Availability of HS with specific sulfation patterns has been a limiting factor and impedes the accuracy of HS glycomics studies. Although organic synthesis provides oligosaccharides, these may not fully represent the biological functions of polysaccharides. Here, we present a study for developing an enzyme-based approach to synthesize a polysaccharide library with different sulfation patterns. Using different combinations of biosynthetic enzymes, we synthesized eight unique polysaccharides. We discovered that polysaccharides without the iduronic acid residue displayed strong binding affinity to antithrombin and high anti-Xa and anti-IIa activities. The enzyme-based synthetic approach could become a general method for discovering new HS structures with unique biological functions.  相似文献   

11.
The complex sulfation motifs of heparan sulfate glycosaminoglycans (HS GAGs) play critical roles in many important biological processes. However, an understanding of their specific functions has been hampered by an inability to synthesize large numbers of diverse, yet defined, HS structures. Herein, we describe a new approach to access the four core disaccharides required for HS/heparin oligosaccharide assembly from natural polysaccharides. The use of disaccharides rather than monosaccharides as minimal precursors greatly accelerates the synthesis of HS GAGs, providing key disaccharide and tetrasaccharide intermediates in about half the number of steps compared to traditional strategies. Rapid access to such versatile intermediates will enable the generation of comprehensive libraries of sulfated oligosaccharides for unlocking the “sulfation code” and understanding the roles of specific GAG structures in physiology and disease.  相似文献   

12.
Heparan sulfate, a cell surface bound glycosaminoglycan polysaccharide, has been implicated in numerous biological functions. Heparan sulfate molecules are highly complex and diverse, yet deceivingly look simple and similar, rendering structure--function correlation tedious. Current chromatographic and mass spectrometric techniques have limitations for analyzing glycosaminoglycan samples that are in low abundance and that are large in size, due to their highly acidic nature arising from a large number of sulfate and of carboxylate groups. A new methodology was developed using capillary ion-paired reverse-phase C18 HPLC directly coupled to ESI-TOF-MS to address the above issues. On the basis of HS disaccharide analysis, dibutylamine was found to be the best suited for HS analysis among many ion-pairing agents investigated. Next, analysis of oligosaccharides derived from heparosan, the precursor for heparan sulfate, was undertaken to demonstrate its greater applicability in a more complex structural analysis. The established chromatographic conditions enabled the characterization of heparosan oligosaccharides of sizes up to tetracontasaccharide with high resolution in a single run and were amenable to negative ion electrospray MS in which sodium adduction and fragmentation were avoided. To date, these are the largest nonsulfated HS precursor oligosaccharides to be characterized by LC/MS. Finally, the current methodology was applied to the characterization of the biologically important ATIII binding pentasaccharide and its precursors, which differ from each other by sulfation pattern and/or degree of sulfation. All of these pentasaccharides were well-resolved and characterized by the LC/MS system with (34)SO(4) as a mass spectral probe. This newly developed methodology facilitates the purification and rapid characterization of biologically significant HS oligosaccharides, and will thus expedite their synthesis. These findings should undoubtedly pave the way in deciphering multiple functional arrangements, ascribed to many biological activities, which are predictably embedded in a single large chaotic, yet well-organized HS polysaccharide chain. Development of newer techniques for HS oligosaccharide analysis is greatly needed in the postgenome era as attention shifts to the functional implications of proteins and carbohydrates in general and HS in particular.  相似文献   

13.
Heparan sulfates (HS) are a class of sulfated polysaccharides that function as dynamic biological regulators of the functions of diverse proteins. The structural basis of these interactions, however, remains elusive, and chemical synthesis of defined structures represents a challenging but powerful approach for unravelling the structure–activity relationships of their complex sulfation patterns. HS has been shown to function as an inhibitor of the β‐site cleaving enzyme β‐secretase (BACE1), a protease responsible for generating the toxic Aβ peptides that accumulate in Alzheimer’s disease (AD), with 6‐O‐sulfation identified as a key requirement. Here, we demonstrate a novel generic synthetic approach to HS oligosaccharides applied to production of a library of 16 hexa‐ to dodecasaccharides targeted at BACE1 inhibition. Screening of this library provided new insights into structure–activity relationships for optimal BACE1 inhibition, and yielded a number of potent non‐anticoagulant BACE1 inhibitors with potential for development as leads for treatment of AD through lowering of Aβ peptide levels.  相似文献   

14.
Theoretical energy‐based conformational analysis of bis(2‐phenethyl)vinylphosphine and related phosphine oxide, sulfide and selenide synthesized from available secondary phosphine chalcogenides and vinyl sulfoxides is performed at the MP2/6‐311G** level to study stereochemical behavior of their 31P–1H spin–spin coupling constants measured experimentally and calculated at different levels of theory. All four title compounds are shown to exist in the equilibrium mixture of two conformers: major planar s‐cis and minor orthogonal ones, while 31P–1 H spin–spin coupling constants under study are found to demonstrate marked stereochemical dependences with respect to the geometry of the coupling pathways, and to the internal rotation of the vinyl group around the P(X)‐C bonds (X = LP, O, S and Se), opening a new guide in the conformational studies of unsaturated phosphines and phosphine chalcogenides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The sugar-modified Schiff base ligand benzyl 2-deoxy-2-salicylideneamino-alpha-D-glucopyranoside H 2L, prepared by condensation of salicylaldehyde and the monomeric chitosan analogue benzyl 2-deoxy-2-amino-alpha-D-glucopyranoside, reacts with copper(II) acetate to form a self-assembled, alkoxo-bridged tetranuclear homoleptic copper(II) complex [{Cu(L)}4] (4) with Cu4O4 heterocubane core. The chiral complex 4 crystallizes in the space group P2 12 12 1. The tetranuclear complex 4 is composed of two dinuclear {Cu(L)}2 entities linked by the four mu 3-bridging C-3 alkoxide oxygen atoms of the sugar backbone. The preorganization of the dimeric {Cu(L)}2 entities is enforced by strong hydrogen bonds between the phenolate oxygen atom and the C-4 hydroxy group of the two constituting chiral monomeric building blocks. Therefore the Cu4O4 core can be classified as a type I or 2 + 4 cubane. The chirality of the structure is confirmed by circular dichroism (CD) spectra, which reveal a significant dichroism associated with the copper centered transitions at around 600 nm. Temperature dependent magnetic susceptibility measurements indicate ferromagnetic exchange interactions in complex 4. Fitting of the experimental data with a two J model based on the 2 + 4 topology ( H = - J1(S1S3 + S2S4) - J2(S1 + S3)(S2 + S4)) leads to exchange coupling constants of J1 = 64 and J2 = 4 cm(-1). The observed ferromagnetic coupling can be attributed to the very small Cu-O-Cu bridging angles within the Cu2O2 core of the constituting dimeric entities, which are a result of the conformational requirements introduced by the sugar backbone. 4 is not only the first example of an alkoxo-bridged tetranuclear copper(II) complex with Cu4O4 core representing the 2 + 4 cubane class with ferromagnetic ground state but also a rare example for the class of molecules combining a ferromagnetic ground state with optical activity. The ferromagnetic S = 2 ground state of 4 is confirmed by magnetization measurements and ESR spectroscopy.  相似文献   

16.
Human milk oligosaccharides (HMOs) are important as prebiotics since they stimulate the growth of beneficial bacteria in the intestine and act as receptor analogues that can inhibit the binding of pathogens. The conformation and dynamics of the HMO Lacto-N-fucopentaose 2 (LNF-2), α-L-Fucp-(1 → 4)[β-D-Galp-(1 → 3)]-β-D-GlcpNAc-(1 → 3)-β-D-Galp-(1 → 4)-D-Glcp, having a Lewis A epitope, has been investigated employing NMR spectroscopy and molecular dynamics (MD) computer simulations. 1D (1)H,(1)H-NOESY experiments were used to obtain proton-proton cross-relaxation rates from which effective distances were deduced and 2D J-HMBC and 1D long-range experiments were utilized to measure trans-glycosidic (3)J(CH) coupling constants. The MD simulations using the PARM22/SU01 force field for carbohydrates were carried out for 600 ns with explicit water as solvent which resulted in excellent sampling for flexible glycosidic torsion angles. In addition, in vacuo MD simulations were performed using an MM3-2000 force field, but the agreement was less satisfactory based on an analysis of heteronuclear trans-glycosidic coupling constants. LNF-2 has a conformationally well-defined region consisting of the terminal branched part of the pentasaccharide, i.e., the Lewis A epitope, and a flexible β-D-GlcpNAc-(1 → 3)-β-D-Galp-linkage towards the lactose unit, which is situated at the reducing end. For this β-(1 → 3)-linkage a negative ψ torsion angle is favored, when experimental NMR data is combined with the MD simulation in the analysis. In addition, flexibility on a similar time scale, i.e., on the order of the global overall molecular reorientation, may also be present for the ? torsion angle of the β-D-Galp-(1 → 4)-D-Glcp-linkage as suggested by the simulation. It was further observed from a temperature variation study that some (1)H NMR chemical shifts of LNF-2 were highly sensitive and this study indicates that Δδ/ΔT may be an additional tool for revealing conformational dynamics of oligosaccharides.  相似文献   

17.
Several 6-C-substituted 2-acetamido-2-deoxy-beta-D-glucopyranosides (beta-D-GlcNAc monosaccharides 1a-3a and 1,4-linked disaccharides 1b-3b) were studied by solution NMR spectroscopy. Conformational analysis of the (6S)- and (6R)-C-methyl-substituted beta-d-GlcNAc monosaccharides indicates that the stereodefined methyl groups impose predictable conformational biases on the exocyclic C-5-C-6 bond, as determined by (1)H-(1)H and (13)C-(1)H coupling constants. Variable-temperature NMR experiments in methanol-d(4) were performed to determine DeltaDeltaH and DeltaDeltaS values derived from the two lowest energy conformers. These indicate that while the influence of 6-C-methyl substitution on conformational enthalpy is in accord with the classic principles of steric interactions, conformational preference in solution can also be strongly affected by other factors such as solvent-solute interactions and solvent reorganization.  相似文献   

18.
Bacterial polysaccharides are comprised of a variety of monosaccharides, L-rhamnose (6-deoxy-L-mannose) being one of them. This sugar is often part of α-(1 → 2)- and/or α-(1 → 3)-linkages and we have therefore studied the disaccharide α-L-Rhap-(1 → 2)-α-L-Rhap-OMe to obtain information on conformational preferences at this glycosidic linkage. The target disaccharide was synthesized with (13)C site-specific labeling at C1' and at C2', i.e., in the terminal group. 2D (1)H,(13)C-HSQC-HECADE and (1)H,(13)C-J-HMBC NMR experiments, 1D (13)C and (1)H NMR spectra together with total line-shape analysis were used to extract conformationally dependent hetero- and homonuclear spin-spin coupling constants. This resulted in the determination of (2)J(C2',H1'), (3)J(C1',C1), (3)J(C1',C3), (3)J(C2',C2), (2)J(C1',C2), (1)J(C1',C2'), and (1)J(C1',H1'). These data together with previously determined J(CH) and (1)H,(1)H NOEs result in fourteen conformationally dependent NMR parameters that are available for analysis of glycosidic linkage flexibility and conformational preferences. A 100 ns molecular dynamics (MD) simulation of the disaccharide with explicit water molecules as solvent showed a major conformational state at φ(H)≈ 40° and ψ(H)≈-35°, consistent with experimental NMR data. In addition, MD simulations were carried out also for α-L-Rhap-(1 → 3)-α-L-Rhap-OMe and a rhamnan hexasaccharide. The gathered information on the oligosaccharides was used to address conformational preferences for a larger structure, a 2- and 3-linked nonasaccharide, with implications for the 3D structure of rhamnan polysaccharides, which should be regarded as flexible polymers.  相似文献   

19.
Achieving selective inhibition of chemokines with structurally well-defined heparan sulfate (HS) oligosaccharides can provide important insights into cancer cell migration and metastasis. However, HS is highly heterogeneous in chemical composition, which limits its therapeutic use. Here, we report the rational design and synthesis of N-unsubstituted (NU) and N-acetylated (NA) heparan sulfate tetrasaccharides that selectively inhibit structurally homologous chemokines. HS analogs were produced by divergent synthesis, where fully protected HS tetrasaccharide precursor was subjected to selective deprotection and regioselectively O-sulfated, and O-phosphorylated to obtain 13 novel HS tetrasaccharides. HS microarray and SPR analysis with a wide range of chemokines revealed the structural significance of sulfation patterns and NU domain in chemokine activities for the first time. Particularly, HT-3,6S-NH revealed selective recognition by CCL2 chemokine. Further systematic interrogation of the role of HT-3,6S-NH in cancer demonstrated an effective blockade of CCL2 and its receptor CCR2 interactions, thereby impairing cancer cell proliferation, migration and invasion, a step towards designing novel drug molecules.  相似文献   

20.
We report the implementation of an all-atom Brownian dynamics simulation model of peptides using the constraint algorithm LINCS. The algorithm has been added as a part of UHBD. It uses adaptive time steps to achieve a balance between computational speed and stability. The algorithm was applied to study the effect of phosphorylation on the conformational preference of the peptide Gly-Ser-Ser-Ser. We find that the middle serine residue experiences considerable conformational change from the C(7eq) to the alpha(R) structure upon phosphorylation. NMR (3)J coupling constants were also computed from the Brownian trajectories using the Karplus equation. The calculated (3)J results agree reasonably well with experimental data for phosphorylated peptide but less so for doubly charged phosphorylated one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号