首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Lagrange multiplier form of index 3 differential-algebraic equations of motion for holonomically constrained multibody systems is transformed using tangent space generalized coordinates to an index 0 form that is equivalent to an ordinary differential equation. The index 0 formulation includes embedded tolerances that assure satisfaction of position, velocity, and acceleration constraints and is solved using established explicit and implicit numerical integration methods. Numerical experiments with two spatial applications show that the formulation accurately satisfies constraints, preserves invariants due to conservation laws, and behaves as if applied to an ordinary differential equation.  相似文献   

2.
In the present paper the concept of screw in classical mechanics is expressed in matrix form, in order to formulate the dynamical equations of the multibody systems. The mentioned method can retain the advantages of the screw theory and avoid the shortcomings of the dual number notation. Combining the screw-matrix method with the tool of graph theory in Roberson/Wittenberg formalism. We can expand the application of the screw theory to the general case of multibody systems. For a tree system, the dynamical equations for eachj-th subsystem, composed of all the outboard bodies connected byj-th joint can be formulated without the constraint reaction forces in the joints. For a nontree system, the dynamical equations of subsystems and the kinematical consistency conditions of the joints can be derived using the loop matrix. The whole process of calculation is unified in matrix form. A three-segment manipulator is discussed as an example. This work is supported by the National Natural Science Fund.  相似文献   

3.
This paper presents stability and convergence results on a novel approach for imposing holonomic constraints for a class of multibody system dynamics. As opposed to some recent techniques that employ a penalty functional to approximate the Lagrange multipliers, the method herein defines a penalized dynamical system using penalty-augmented kinetic and potential energies, as well as a penalty dependent constraint violation dissipation function. In as much as the governing equations are not typically cocreive, the usual convergence criteria for linear variational boundary value problems are not directly applicable. Still numerical simulations by various researchers suggest that the method is convergent and stable. Despite the fact that the governing equations are nonlinear, the theoretical convergence of the formulation is guaranteed if the multibody system is natural and conservative. Likewise, stability and asymptotic stability results for the penalty formulation are derived from well-known stability results available from classical mechanics. Unfortunately, the convergence theorem is not directly applicable to dissipative multibody systems, such as those encountered in control applications. However, it is shown that the approximate solutions of a typical dissipative system converge to a nearby collection of trajectories that can be characterized precisely using a Lyapunov/Invariance Principle analysis. In short, the approach has many advantages as an alternative to other computational techniques:
(1)  Explicit constraint violation bounds can be derived for a large class of nonlinear multibody dynamics problems
(2)  Sufficient conditions for the Lyapunov stability, and asymptotic stability, of the penalty formulation are derived for a large class of multibody systems
(3)  The method can be shown to be relatively insensitive to singular configurations by selecting the penalty parameters to dissipate constraint violation energy
(4)  The Invariance Principle can be employed in the method, in certain cases, to derive the asymptotic behavior of the constraint violation for dissipative multibody systems by identifying constraint violation limit cycles
Just as importantly, these results for nonlinear systems can be sharpened considerably for linear systems:
(5)  Explicit spectral error estimates can be obtained for substructure synthesis
(6)  The penalty equations can be shown to be optimal in the sense that the terms represent feedback that minimizes a measure of the constraint violation
  相似文献   

4.
Ferrario  Carlo  Passerini  Arianna 《Meccanica》2000,35(5):433-442
In the present paper we study the motion of a disk rolling without sliding on a rotating platform, deriving the differential equations directly by D'Alembert principle.  相似文献   

5.
In the analysis of multibody dynamics, we are often required to deal with singularity problems where the constraint Jacobian matrix may become less than full rank at some instantancous configurations. This creates numerical instability which will affect the performance of the mechanical system. A modification procedure of the constraints when they vanish or become linearly dependent is proposed to regularize the dynamics of the system. A distinction between the asymptotic stability due to the representation of the constraints (at the velocity and acceleration level), and the one due to the singularity is discussed in full in this paper. It is shown that Baumgarte technique could be extended to accommodate the representation of the constraints in the neighborhood of singularity. A two link planar manipulator undergoing large motion and passing through a singular configuration is used to illustrate the proposed stability technique.  相似文献   

6.
As attractive alternatives to a set of three Euler angles, the rotation of a rigidly deforming body is often represented using four or more parameters. The accompanying parameter constraints introduce generalized constraint forces in the equations of motion which can often negate the benefits of a particular parameterization. In this paper, we discuss situations where the parameter constraints are not imposed. Thus, although the body no longer deforms rigidly, it does deform homogeneously. This allows the theory of a Cosserat point (or, equivalently, the theory of a pseudo-rigid body) to be used to establish equations governing its motion. Earlier work on this topic by O’Reilly and Varadi considered the four Euler parameters and the single Euler parameter constraint. Here, we consider Poincaré's six parameter representation of a rotation tensor, and, complementing earlier work, discuss numerical implementation and representative simulations. One of the contributions of this paper is the development of a viscoelastic Cosserat point, whose equations of motion are free from parameter constraints and singularities, that can be used to approximate the motion of a rigid body.  相似文献   

7.
研究求解微分-代数方程组(DAEs)的高效率、高精度和高稳定性数值积分方法一直是多体系统动力学领域的热点问题之一。本文将求解结构动力学方程的Bathe数值积分策略应用于DAEs的求解,并基于SiPESC平台开发了开放式多体系统动力学仿真算法软件,综合比较研究了Newmark法、HHT-I3法、Generalizedα方法、Bathe方法和祖冲之类Symplectic方法。通过复摆、刚-柔耦合双摆和对称陀螺三个数值算例研究了算法参数与数值阻尼的关系。数值实验表明,Newmark方法在特定参数下引入的数值阻尼通常不可控,HHT-I3方法、Generalizedα方法和Bathe方法通过选择特定步长和参数可引入可控的数值阻尼,祖冲之类Symplectic方法无数值阻尼。在求解真实高频和低频耦合问题以及高速旋转的陀螺问题时,采用祖冲之类Symplectic方法或者无耗散的Newmar方法能够对系统的高频成分进行准确模拟。  相似文献   

8.
IntroductionThedynamicequationsofmotionofmultibodysystemswithconstraintsarethefollowingdifferential/algebraicequations,i.e.,E...  相似文献   

9.
Two-dimensional initial-boundary value problems are considered for the shallow water equations and the equation of advection and dispersion of pollutants. The problems are solved in curvilinear boundary fitted co-ordinates. The transformed equations are integrated on a regular grid by the semi-implicit and implicit finite difference methods. Based on the numerical method, the integrated modelling system Cardinal for coastal area dynamics and pollution processes is developed for application on personal computers. Examples of computations are given.  相似文献   

10.
基于开放式工程与科学计算集成化软件平台SiPESC,研发了用于多体系统动力学时程分析的一类通用求解算法构架。该构架的核心思想是算法与数据相分离,整个构架由五个基本类及子类组成。本文重点阐述基本类的抽象过程,利用插件技术设计求解器的构架,进一步应用该构架实现了Newmark方法,HHT(Hilber-Hughes-Taylor)方法,Generalized α方法,Bathe方法及祖冲之类Symplectic方法等微分-代数方程组(DAEs)求解器的开发。研究工作表明,本文所提出的DAEs求解算法构架对多体系统动力学的时程分析具有良好的开放性和通用性,可方便进行各种新的DAEs求解算法的动态扩展。  相似文献   

11.
小天体探测是未来深空探测的重点领域之一, 而小天体附近轨道动力学与控制问题是小天体探测任务迫切需要解决的关键问题. 该问题涉及形状不规则小天体附近的动力学环境建模与小天体附近轨道动力学机理. 本文从不规则形状小天体引力场的建模、小天体附近的自然轨道动力学、小天体附近的受控轨道动力学3 个方面综述了小天体附近轨道动力学与控制的研究现状与发展趋势, 并分析了小天体附近轨道动力学所面临的挑战与难题, 最后对我国未来小天体探测任务可能涉及的轨道动力学与控制问题的发展方向进行了展望.  相似文献   

12.
The equations of motion of a rigid body acted upon by general conservative potential and gyroscopic forces were reduced by Yehia to a single second-order differential equation. The reduced equation was used successfully in the study of stability of certain simple motions of the body. In the present work we use the reduced equation to construct a new particular solution of the dynamics of a rigid body about a fixed point in the approximate field of a far Newtonian centre of attraction. Using a transformation to a rotating frame we also construct a new solution of the problem of motion of a multiconnected rigid body in an ideal incompressible fluid. It turns out that the solutions obtained generalize a known solution of the simplest problem of motion of a heavy rigid body about a fixed point due to Dokshevich.  相似文献   

13.
In this paper, a novel adaptive gradient smoothing method (GSM) based on irregular cells and strong form of governing equations for fluid dynamics problems with arbitrary geometrical boundaries is presented. The spatial derivatives at a location of interest are consistently approximated by integrally averaging of gradients over a smoothing domain constructed around the location. Such a favorable GSM scheme corresponds to a compact stencil with positive coefficients of influence on regular cells. The error equidistribution strategy is adopted in the solution‐based adaptive GSM procedure, and adaptive grids are attained with the remeshing techniques and the advancing front method. In this paper, the adaptive GSM has been tested for solutions to both Poisson and Euler equations. The sensitivity of the GSM to the irregularity of the grid is examined in the solutions to the Poisson equation. We also investigate the effects of error indicators based on the first derivatives and second derivatives of density, respectively, to the solutions to the shock flow over the NACA0012 airfoil. The adaptive GSM effectively yields much more accurate results than the non‐adaptive GSM solver. The whole adaptive process is very stable and no spurious behaviors are observed in all testing cases. The cosmetic techniques for improving grid quality can effectively boost the accuracy of GSM solutions. It is also found that the adaptive GSM procedure using the second derivatives of density to estimate the error indicators can automatically and accurately resolve all key features occurring in the flow with discontinuities. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A non-linear one-dimensional model of inextensional, shear undeformable, thin-walled beam with an open cross-section is developed. Non-linear in-plane and out-of-plane warping and torsional elongation effects are included in the model. By using the Vlasov kinematical hypotheses, together with the assumption that the cross-section is undeformable in its own plane, the non-linear warping is described in terms of the flexural and torsional curvatures. Due to the internal constraints, the displacement field depends on three components only, two transversal translations of the shear center and the torsional rotation. Three non-linear differential equations of motion up to the third order are derived using the Hamilton principle. Taking into account the order of magnitude of the various terms, the equations are simplified and the importance of each contribution is discussed. The effect of symmetry properties is also outlined. Finally, a discrete form of the equations is given, which is used in Part II to study dynamic coupling phenomena in conditions of internal resonance.  相似文献   

15.
This paper presents a stable formulation for the advection–diffusion equation based on the Generalized (or eXtended) Finite Element Method, GFEM (or X‐FEM). Using enrichment functions that represent the exponential character of the exact solution, smooth numerical solutions are obtained for problems with steep gradients and high Péclet numbers in one‐ and two‐dimensions. In contrast with traditional stabilized methods that require the construction of stability parameters and stabilization terms, the present work avoids numerical instabilities by improving the classical Galerkin solution with enrichment functions (that need not be polynomials) using GFEM, which is an instance of the partition of unity framework. This work also presents a strategy for constructing enrichment functions for problems involving complex geometries by employing a global–local‐type approach. Representative numerical results are presented to illustrate the performance of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The dissipative particle dynamics mesoscopic simulation method is analyzed thoroughly by identifying the scaling factors necessary to simulate a multicomponent system. A new framework of general expressions is derived relating the parameters in the system to their dimensionless quantities. The consistent non‐dimensionalization used in this paper serves to connect the previous models in the literature. When the scaling factors are based on the solvent in a multicomponent system, the system of equations reduces to the well‐known Groot and Warren model. Validation results for ideal, simple and binary immiscible fluids are presented and compared with established results from the literature. The framework established herein is an important step toward the practical application of dissipative particle dynamics for the analysis of complex fluid systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The development of a shear-deformable laminated plate element, based on the Mindlin plate theory, for use in large reference displacement analysis is presented. The element is sufficiently general to accept an arbitrary number of layers and an arbitrary number of orthotrophic material property sets. Coordinate mapping is utilized so that non-rectangular elements may be modeled. The Gauss quadrature method of numerical integration is utilized to evaluate volume integrals. A comparative study is done on the use of full Gauss quadrature, reduced Gauss quadrature, mixed Gauss quadrature, and closed form integration techniques for the element. Dynamic analysis is performed on the RSSR (Revolute-Spherical-Spherical-Revolute) mechanism, with the coupler modeled as a flexible plate. The results indicate the differences in the dynamic response of the transverse shear deformable eight-noded element as compared to a four-noded plate element. Dynamically induced stresses are examined, with the results indicating that the primary deformation mode of the eight-noded Mindlin plate model being bending.  相似文献   

18.
We present and discuss an efficient, high‐order numerical solution method for solving the Boltzmann equation for low‐speed dilute gas flows. The method's major ingredient is a new Monte Carlo technique for evaluating the weak form of the collision integral necessary for the discontinuous Galerkin formulation used here. The Monte Carlo technique extends the variance reduction ideas first presented in Baker and Hadjiconstantinou (Phys. Fluids 2005; 17 , art. no. 051703) and makes evaluation of the weak form of the collision integral not only tractable but also very efficient. The variance reduction, achieved by evaluating only the deviation from equilibrium, results in very low statistical uncertainty and the ability to capture arbitrarily small deviations from equilibrium (e.g. low‐flow speed) at a computational cost that is independent of the magnitude of this deviation. As a result, for low‐signal flows the proposed method holds a significant computational advantage compared with traditional particle methods such as direct simulation Monte Carlo (DSMC). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.  相似文献   

20.
In computational multibody algorithms, the kinematic constraintequations that describe mechanical joints and specified motiontrajectories must be satisfied at the position, velocity andacceleration levels. For most commonly used constraint equations, onlyfirst and second partial derivatives of position vectors with respect tothe generalized coordinates are required in order to define theconstraint Jacobian matrix and the first and second derivatives of theconstraints with respect to time. When the kinematic and dynamicequations of the multibody systems are formulated in terms of a mixedset of generalized and non-generalized coordinates, higher partialderivatives with respect to these non-generalized coordinates arerequired, and the neglect of these derivatives can lead to significanterrors. In this paper, the implementation of a contact model in generalmultibody algorithms is presented as an example of mechanical systemswith non-generalized coordinates. The kinematic equations that describethe contact between two surfaces of two bodies in the multibody systemare formulated in terms of the system generalized coordinates and thesurface parameters. Each contact surface is defined using twoindependent parameters that completely define the tangent and normalvectors at an arbitrary point on the body surface. In the contact modeldeveloped in this study, the points of contact are searched for on lineduring the dynamic simulation by solving the nonlinear differential andalgebraic equations of the constrained multibody system. It isdemonstrated in this paper that in the case of a point contact andregular surfaces, there is only one independent generalized contactconstraint force despite the fact that five constraint equations areused to enforce the contact conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号