首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is concerned with decentralised velocity feedback for the control of vibration on a flexible structure. Previous studies have shown that a direct velocity feedback loop with a collocated force actuator produces a damping action. Multiple velocity feedback control loops thus reduce the vibration and sound radiation of structures at low frequency resonances, where the response is controlled by damping. However, if the control gains are too high, so that the response of the structure at the control point is close to zero, the feedback control loops will pin the panel at the control positions and thus no damping action is generated. Therefore, in order to maximise the active damping effect, the feedback gains have optimum values and the loops need to be properly tuned.In this paper, a numerical investigation is performed to investigate the possibility of self-tuning the feedback control gains to maximise the power absorbed by the control loops and hence maximise the active damping. The tuning principle is first examined for a single feedback loop for different excitation signals. The tuning of multiple control loops is then considered and the implementation of a practical tuning algorithm is discussed.  相似文献   

2.
汪浩祥  蔡国梁  缪盛  田立新 《中国物理 B》2010,19(3):30509-030509
This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k are studied. An effective nonlinear feedback control method is used to suppress hyperchaos to unstable equilibrium. Furthermore, a circuit is designed to realize this new hyperchaotic system by electronic workbench (EWB). Numerical simulations are presented to show these results.  相似文献   

3.
This paper is focused on the vibration effects produced by an array of decentralised velocity feedback loops that are evenly distributed over a rectangular thin plate to minimise its flexural response. The velocity feedback loops are formed by collocated ideal velocity sensor and point force actuator pairs, which are unconditionally stable and produce ‘sky-hook’ damping on the plate. The study compares how the overall flexural vibration of the plate and the local absorption of vibration power by the feedback loops vary with the control gains. The analysis is carried out both considering a typical frequency-domain formulation based on kinetic energy and structural power physical quantities, which is normally used to study vibration and noise problems, and a time-domain formulation also based on kinetic energy and structural power, which is usually implemented to investigate control problems. The time-domain formulation shows to be much more computationally efficient and robust with reference to truncation errors. Thus it has been used to perform a parametric study to assess if, and under which conditions, the minimum of the kinetic energy and the maximum of the absorbed power cost functions match with reference to: (a) the number of feedback control loops, (b) the structural damping in the plate, (c) the mutual distance of a pair of control loops and (d) the mutual gains implemented in a pair of feedback loops.  相似文献   

4.
This paper is concerned with the active isolation of a system containing a distributed parameter isolator using absolute velocity feedback control. The main differences between this type of system and one with a massless isolator, is that there are isolator resonances. It is shown that the vibration at these resonance frequencies cannot be suppressed using a simple velocity feedback control strategy. Moreover, it is found that the isolator resonances can cause the control system to become unstable, if the isolated equipment is supported on a flexible base. A stability criterion based on the mode shapes of the system is presented. Two techniques to stabilise the system are investigated and compared. The first involves the addition of mass on the base structure, and the second involves an electronic lead compensator. Experimental results are presented to support the theoretical findings. It is shown that even if the instability due to the isolator resonances and flexibility of the base can be prevented, the instability due to the flexibility of the equipment remains a problem.  相似文献   

5.
This paper presents theoretical and experimental work on concurrent active noise and vibration control for a ventilation duct. The active noise control system is used to reduce the air-borne noise radiated via the duct outlet whereas the active vibration control system is used to both reduce the structure-borne noise radiated by the duct wall and to minimise the structural feed-through effect that reduces the effectiveness of the active noise control system. An elemental model based on structural mobility functions and acoustic impedance functions has been developed to investigate the principal effects and limitations of feed-forward active noise control and decentralised velocity feedback vibration control. The principal simulation results have been contrasted and validated with measurements taken on a laboratory duct set-up, equipped with an active noise control system and a decentralised vibration control system. Both simulations and experimental results show that the air-borne noise radiated from the duct outlet can be significantly attenuated using the feed-forward active noise control. In the presence of structure-borne noise the performance of the active noise control system is impaired by a structure-borne feed-through effect. Also the sound radiation from the duct wall is increased. In this case, if the active noise control is combined with a concurrent active vibration control system, the sound radiation by the duct outlet is further reduced and the sound radiation from the duct wall at low frequencies reduces noticeably.  相似文献   

6.
This paper compares various decentralised control strategies, including structural and acoustic actuator–sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural–acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.  相似文献   

7.
一类新混沌系统的线性状态反馈控制   总被引:11,自引:0,他引:11       下载免费PDF全文
李瑞红  徐伟  李爽 《物理学报》2006,55(2):598-604
研究了一类新混沌系统的控制问题.利用Routh-Hurwitz准则对受控系统进行了稳定性分析,结合线性状态反馈方法理论上严格证明了达到控制目标反馈系数的选择原则.数值研究证明了该方法能够有效地控制混沌系统到失稳的平衡点或周期解,同时控制效果在弱噪声干扰下具有很强的鲁棒性. 关键词: 新混沌系统 线性状态反馈控制 Routh-Hurwitz准则 噪声  相似文献   

8.
尚慧琳 《物理学报》2012,61(18):180506-180506
以受迫Holmes-Duffing系统为研究对象, 对系统施加时滞速度反馈控制, 研究周期激励引起的系统安全域的分形侵蚀及时滞速度反馈对分形侵蚀安全盆的控制作用. 利用Melnikov函数法给出时滞受控系统的安全盆的边界分形条件. 再以时滞量为变参数, 运用四阶Runge-Kutta方法和点映射方法数值研究了时滞对受控系统安全盆的影响规律. 结果表明在弱反馈下, 时滞量的增大能够提高安全盆边界分形的阈值, 从而抑制安全盆的分形侵蚀. 说明时滞速度反馈能够有效抑制系统的安全盆侵蚀.  相似文献   

9.
Comparison of feedback control methods for a hyperchaotic Lorenz system   总被引:1,自引:0,他引:1  
More and more attention has been payed to the hyperchaotic system for the huge potential applications of hyperchaotic system such as secure communication and more complex structure than chaotic system. So at present the controlling of the hyperchaotic system simply and effectively is a frontier topic of nonlinear science. In this Letter, for the latest hyperchaotic Lorenz system, four feedback control methods were studied with analytic solution and necessary numerical simulations. It is found that the enhancing feedback control approach is the best choice of the given four feedback control methods for its relatively simple external inputs and relatively small necessary feedback coefficient after comparison. The conclusion is a helpful for the choice of control methods of any other chaotic and hyperchaotic systems.  相似文献   

10.
A variable-stiffness isolation system, whose isolation stiffness can be altered instantaneously in response to the seismic load, is able to provide better seismic protection for vibration-sensitive equipment or facilities than a conventional isolation system with a fixed stiffness. To determine its time-variant isolation stiffness, this system usually requires an effective on-line control law. In this study, a control strategy called the least input energy control (LIEC) is proposed for a general variable-stiffness isolation system. With the feedback of the ground velocity, at each time step the LIEC is able to determine the optimal isolation stiffness that minimizes the input seismic energy transmitted onto the isolated object. In order to evaluate its control performance, the LIEC was physically implemented on a leverage-type variable-stiffness isolation system, and tested in a seismic simulation test. The experimental response of the LIEC was then compared to the uncontrolled response, as well as the simulated responses of two semi-active control laws derived from the widely used LQR control and modal control. A comparison of the results demonstrates that, among all the control cases considered, the LIEC transmits the least seismic input energy to the isolated system, and thus has the best isolation performance. In addition, the test data also show that the LIEC requires the least control force and control energy. This indicates that the LIEC is also a very efficient control method for variable-stiffness isolation systems.  相似文献   

11.
祁伟  张岩  汪映海 《中国物理》2007,16(8):2259-2263
In this paper multiple delay feedback control (MDFC) with different and independent delay times is shown to be an efficient method for stabilizing fixed points in finite-dimensional dynamical systems. Whether MDFC can be applied to infinite-dimensional systems has been an open question. In this paper we find that for infinite-dimensional systems modelled by delay differential equations, MDFC works well for stabilizing (unstable) steady states in long-, moderate- and short-time delay regions, in particular for the hyperchaotic case.  相似文献   

12.
This paper undertakes a nonlinear analysis of a model for a maglev system with time-delayed feedback. Using linear analysis, we determine constraints on the feedback control gains and the time delay which ensure stability of the maglev system. We then show that a Hopf bifurcation occurs at the linear stability boundary. To gain insight into the periodic motion which arises from the Hopf bifurcation, we use the method of multiple scales on the nonlinear model. This analysis shows that for practical operating ranges, the maglev system undergoes both subcritical and supercritical bifurcations, which give rise to unstable and stable limit cycles respectively. Numerical simulations confirm the theoretical results and indicate that unstable limit cycles may coexist with the stable equilibrium state. This means that large enough perturbations may cause instability in the system even if the feedback gains are such that the linear theory predicts that the equilibrium state is stable.  相似文献   

13.
Control units comprising a proof-mass electrodynamic actuator and accelerometer-sensor pair with a time integrator and fixed gain controller are an effective way to implement velocity feedback control on thin flexible structures. These control units produce active damping provided the fundamental resonance frequency of the actuators is well below that of the structure under control. Control stability limits arise from the actuators fundamental resonances which introduce a 180° phase lag in the sensor-actuator frequency response functions, thus causing the feedback loops to be only conditionally stable. In contrast to previous studies, this paper discusses the response of a control unit with electrodynamic proof-mass actuator in terms of the open- and closed-loop base impedance that it exerts on the structure. This allows for a straight-forward physical interpretation of both stability and control performance. Experimental and simulation results show that the base impedance can be described as the sum of passive and active frequency response functions, where the active part of the control unit response depends on the actuator electromechanical response and also on the response function of the analogue controller circuit. The results show that the base impedance formulation can be effectively used to investigate new designs of both the actuator and electronic controller in order to optimise the stability and performance properties of the control unit.  相似文献   

14.
This paper combines cubic nonlinearity and time delay to improve the performance of vibration isolation. Nonlinear dynamics properties, design methodology and isolation performance are studied for a piecewise bilinear vibration isolation system with the time-delayed cubic velocity feedback control. By the multi-scale perturbation method, the equivalent stiffness and damping are first defined to interpret the effect of feedback control loop on dynamics behaviours, such as frequency island phenomenon. Then, a design criterion is proposed to suppress the jump phenomenon induced by the saddle-node bifurcation. With the purpose of obtaining the desirable vibration isolation performance, stability conditions are obtained to find appropriate feedback parameters including gain and time delay. Last, the influence of the feedback parameters on vibration transmissibility is assessed. Results show that the strategy developed in this paper is practicable and feedback parameters are significant factors to alter dynamics behaviours, and more importantly, to improve the isolation effectiveness for the bilinear isolation system.  相似文献   

15.
An intercept-resend attack on a continuous-variable quantum-key-distribution protocol is investigated experimentally. By varying the interception fraction, one can implement a family of attacks where the eavesdropper totally controls the channel parameters. In general, such attacks add excess noise in the channel, and may also result in non-Gaussian output distributions. We implement and characterize the measurements needed to detect these attacks, and evaluate experimentally the information rates available to the legitimate users and the eavesdropper. The results are consistent with the optimality of Gaussian attacks resulting from the security proofs.  相似文献   

16.
Fermi-Pasta-Ulam recurrence through soliton dynamics has been realized. The experiment used a magnetic film strip-based active feedback ring. At some ring gain level, a wide spin wave pulse is self-generated in the ring. As the pulse circulates, it separates into two envelop solitons with different speeds. When the fast soliton catches up and collides with the slow soliton, the initial wide pulse is perfectly reconstructed. The repetition of this process leads to periodic recurrences of the initial pulse.  相似文献   

17.
张丽萍  薛具奎 《中国物理》2007,16(8):2264-2271
The chaos in the KdV Burgers equation describing a ferroelectric system has been successfully controlled by using a continuous feedback control. This system has two stationary points. In order to know whether the chaos is controlled or not, the instability of control equation has been analysed numerically. The numerical analysis shows that the chaos can be converted to one point by using one control signal, however, it can converted to the other point by using three control signals. The chaotic motion is converted to two desired stationary points and periodic orbits in numerical experiment separately.  相似文献   

18.
于欣  许超  林群 《中国物理 B》2014,(8):240-245
In this paper, we consider the internal stabilization problems of FitzHugh–Nagumo(FHN) systems on the locally finite connected weighted graphs, which describe the process of signal transmission across axons in neurobiology. We will establish the proper condition on the weighted Dirichlet–Laplace operator on a graph such that the nonlinear FHN system can be stabilized exponentially and globally only using internal actuation over a sub-domain with a linear feedback form.  相似文献   

19.
简要描述HL-2M控制系统的概念设计,主要对其中反馈控制部分作了介绍,重新编写了反馈控制程序。为了满足HL-2M装置对控制系统的进一步要求,重新设计了反馈控制系统程序。对其中一些功能的实现方法进行了设计改进,引入了由反射内存卡构建的实时通讯网络,并以此通讯网络为基础进行了反馈控制系统的架构布局。在Linux操作系统中,利用以前放电的实验数据,模拟测试了新的反馈控制系统。测试结果良好,满足预期要求。  相似文献   

20.
We show by means of theoretical considerations and electronic circuit experiments that time-delayed feedback control suffers from severe global constraints if transitions at the control boundaries are discontinuous. Subcritical behavior gives rise to small basins of attraction and thus limits the control performance. The reported properties are, on the one hand, universal since the mechanism is based on general arguments borrowed from bifurcation theory and, on the other hand, directly visible in experimental time series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号