首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of mono-doping of 4f lanthanides with and without oxygen vacancy defect on the electronic structures of anatase TiO2 have been studied by first-principles calculations with DFT+U (DFT with Hubbard U correction) to treat the strong correlation of Ti 3d electrons and lanthanides 4f electrons. Our results revealed that dopant Ce is easy to incorporate into the TiO2 host by substituting Ti due to its lower substitutional energy (∼−2.0 eV), but the band gap of the system almost keeps intact after doping. The Ce 4f states are located at the bottom of conduction band, which mainly originates from Ti 3d states. The magnetic moment of doped Ce disappears due to electron transfer from Ce to the nearest O atoms. For Pr and Gd doping, their substitutional energies are similar and close to zero, indicating that both of them may also incorporate into the TiO2 host. For Pr doping, some 4f spin-down states are located next to the bottom of the conduction band and narrow the band gap of the doping system. However, for Gd doping, the 4f states are located in deep valence band and there is no intermediate band in the band gap. The magnetic moment of dopant Gd is close to the value of isolated Gd atom (∼7 μB), indicating no overlapping between Gd 4f with other orbitals. For Eu, it is hard to incorporate into the TiO2 host due to its very higher substitutional energy. The results also indicated that oxygen vacancy defect may enhance the adsorption of the visible light in Ln-doped TiO2 system.  相似文献   

2.
Wu-Jun Shi  Shi-Jie Xiong 《Surface science》2010,604(21-22):1987-1995
Water molecule adsorption on TiO2-terminated (100) surface of SrTiO3 with and without Cr doping is investigated by first principle calculation based on density functional theory. The band gap is shrunk compared with that of bulk due to the existence of defect states on the surface and 3d states of dopants. As a result the absorption energy edge is reduced and locates in the visible region. When adsorbed on the surface, energy levels of water molecules as a whole are lowered with respect to the Fermi energy, but the higher levels are split and electrons are transferred from low levels to high levels due to the decrease of the density of states in low energy region. Weak bonding is formed between water hydrogen atoms and surface oxygen atoms. This bonding causes the electron transferring from substrate to molecule and the occupation of the corresponding states.  相似文献   

3.
Zinc sulfide is a UV-active photocatalyst and it undergoes photocorrosion under light irradiation. In this work, the defect sites on ZnS nanoparticles (NPs) surfaces were induced with the help of powerful ultrasonic waves. The defect sites caused (1) suppression of photocorrosion in a large extent under UV light irradiation and (2) enhancement of visible light photo activity. The photocorrosion inhibition was induced by raising valence band (VB) position through the formation of interstitial zinc and sulfur vacancy states in the ZnS band structure and weakening of oxidative capacity of hole. The enhancement of visible light photocatalytic activity may be related to the generation of more defect energy states in the ZnS band gap. Under visible light irradiation, the electron was excited from the ZnS VB to the interstitial sulfur and zinc vacancy states before injecting into the conduction band of ZnS. Therefore, we modified the band gap of ZnS so that it acts as a visible light active photocatalyst. ZnS NPs were prepared using two different classical and ultrasound methods. The prepared ZnS using ultrasound method, exhibited more outstanding photocatalytic activity for degrading reactive black 5 (RB5) under UV and sunlight irradiation in comparison with the classical method. Details of the degradation mechanism under UV light were investigated. This work provides new insights to understanding the photocorrosion stability and visible light activity of bare ZnS photocatalyst.  相似文献   

4.
From ab initio studies employing the pseudopotential method and the density functional scheme, we report on progressive changes in geometry, electronic states, and atomic orbitals on Si(0 0 1) by adsorption of different amounts of Bi coverage. For the 1/4 ML coverage, uncovered Si dimers retain the characteristic asymmetric (tilted) geometry of the clean Si(0 0 1) surface and the Si dimers underneath the Bi dimer have become symmetric (untilted) and elongated. For this geometry, occupied as well as unoccupied surface states are found to lie in the silicon band gap, both sets originating mainly from the uncovered and tilted silicon dimers. For the 1/2 ML coverage, there are still both occupied and unoccupied surface states in the band gap. The highest occupied state originates from an elaborate mixture of the pz orbital at the Si and Bi dimer atoms, and the lowest unoccupied state has a ppσ* antibonding character derived from the Bi dimer atoms. For 1 ML coverage, there are no surface states in the fundamental bulk band gap. The highest occupied and the lowest unoccupied states, lying close to band edges, show a linear combination of the pz orbitals and ppσ* antibonding orbital characters, respectively, derived from the Bi dimer atoms.  相似文献   

5.
Comparative GGA and GGA+U calculations for pure and Mo doped anatase TiO2 are performed based on first principle theory, whose results show that GGA+U calculation provide more reliable results as compared to the experimental findings. The direct band gap nature of the anatase TiO2 is confirmed, both by using GGA and GGA+U calculations. Mo doping in anatase TiO2 narrows the band gap of TiO2 by introducing Mo 4d states below the conduction band minimum. Significant reduction of the band gap of anatase TiO2 is found with increasing Mo doping concentration due to the introduction of widely distributed Mo 4d states below the conduction band minimum. The increase in the width of the conduction band with increasing doping concentration shows enhancement in the conductivity which may be helpful in increasing electron–hole pairs separation and consequently decreases the carrier recombination. The Mo doped anatase TiO2 exhibits the n-type characteristic due to the shifting of Fermi level from the top of the valence band to the bottom of the conduction band. Furthermore, a shift in the absorption edge towards visible light region is apparent from the absorption spectrum which will enhance its photocatalytic activity. All the doped models have depicted visible light absorption and the absorption peaks shift towards higher energies in the visible region with increasing doping concentration. Our results describe the way to tailor the band gap of anatase TiO2 by changing Mo doping concentration. The Mo doped anatase TiO2 will be a very useful photocatalyst with enhanced visible light photocatalytic activity.  相似文献   

6.
The crystal structure, electronic structure, optical properties and photocatalytic activity of the native defects in anatase TiO2 were investigated based on the density-functional theory (DFT). The results show that oxygen vacancies (VO) have the lowest formation energy, and thus are easiest to form in the bulk structure. The conduction and valence band moves to the high or low energy region, and the energy gap becomes narrower for the native point defect models. In particular, oxygen interstitials (Oi) have a direct band gap, and new gap states appear in the band gap, which can be responsible for the high photocatalytic efficiency in anatase TiO2. The phenomenon of “impurity compensation” takes place for the oxygen and titanium interstitials. Ti vacancy (VTi) can promote the utilization of solar light by analyzing the absorption spectra. All the calculated results show that Oi and VTi are beneficial in improving the photocatalytic activity of TiO2 in the UV–visible light range.  相似文献   

7.
Structural, electronic and vibrating properties of LiB and its hydrides (Li2BnHn, n=5, 8, 12, LiBH4) were calculated by the first-principles using density functional theory in its generalized gradient approximation. The calculated results are in good agreement with experimental studies. The deviation between theory and experimental results are also discussed. With the increasing of H atoms in range of 5-12, the band gap energy increases and the width of the conduction band decreases. Comparing with LiB, the band gap of LiBH4 is broadened, which indicates the enhancement of Li-B and Li-H bond strength. Valence electrons mainly transfer from Li atoms to B and H atoms. As a result, Li atoms are thought to be partially ionized as Li+ cations. There is little contribution of Li orbital to the occupied states, resulting in Li-H and Li-B bond exhibiting an ionic nature, and B-H bond showing a covalent nature.  相似文献   

8.
The electronic structure of InN nanosheets doped by light elements (Be, B, C, and O) is studied based on spin-polarized density functional theory within the generalized gradient approximation. The results show that the Be and C dopants in InN nanosheets induce spin polarized states in the band gap, or near the valence band, which generates local magnetic moments of 1.0 µB with one dopant atom. Due to the exchange spin-splitting, the three 2p electrons of Be atom are all in px and py orbitals (↑↑↓). So Be will coordinate with host atoms by σ coordination bond. The long-range ferromagnetic order above room temperature is attributed to p–p coupling. For C atom, the configuration of the five 2p electrons is (↑↑↑↓↓), and the unpaired electron is in pz(↑) orbital. So the π bond will be formed between C atom and other atoms. Due the weak π bond cannot support long-range coupling, no stable magnetism is sustained if two C dopants are separated by longer than 3.58 Å.  相似文献   

9.
本文利用基于密度泛函理论(DFT)的第一性原理计算研究了它们的电子结构和光学性质.光学性质的计算结果和实验相一致.结果表明,Fe或Ag掺杂后,K2Ti6O13的带隙中出现了杂质带且其带隙值变小,因而使掺杂后的K2Ti6O13的吸收边发生红移并实现了其对可见光吸收.其中杂质带主要由Fe 3d态或Ag 4d态与Ti 3d态和O 2p态杂化而成.对于Fe掺杂的K2Ti6O13,杂质带位于带隙中间,因此可以作为电子从价带跃迁到导带的桥梁.对于Ag掺杂的K2Ti6O13,杂质带位于价带顶附近为受主能级,可以降低光生载流子的复合概率.实验和计算研究表明,通过Fe或Ag的掺杂可以实现了K2Ti6O13对可见光的吸收,这对进一步研究K2Ti6O13的光学性质具有重要意义.  相似文献   

10.
To deeply understand the effects of Si/N-codoping on the electronic structures of TiO2 and confirm their photocatalytic performance, a comparison theoretical study of their energetic and electronic properties was carried out involving single N-doping, single Si-doping and three models of Si/N-codoping based on first-principles. As for N-doped TiO2, an isolated N 2p state locates above the top of valence band and mixes with O 2p states, resulting in band gap narrowing. However, the unoccupied N 2p state acts as electrons traps to promote the electron-hole recombination. Using Si-doping, the band gap has a decrease of 0.24 eV and the valence band broadens about 0.30 eV. These two factors cause a better performance of photocatalyst. The special Si/N-codoped TiO2 model with one O atom replaced by a N atom and its adjacent Ti atom replaced by a Si atom, has the smallest defect formation energy in three codoping models, suggesting the model is the most energetic favorable. The calculated energy results also indicate that the Si incorporation increases the N concentration in Si/N-codoped TiO2. This model obtains the most narrowed band gap of 1.63 eV in comparison with the other two models. The dopant states hybridize with O 2p states, leading to the valence band broadening and then improving the mobility of photo-generated hole; the N 2p states are occupied simultaneously. The significantly narrowed band gap and the absence of recombination center can give a reasonable explanation for the high photocatalytic activity under visible light.  相似文献   

11.
We performed first-principles calculation to investigate the bonding behavior, electronic structure and visible light absorption of MnxBi1−xOCl (x=0, 0.0625, 0.09375 and 0.125) using density functional theory (DFT) within a plane-wave ultrasoft pseudopotential scheme. The relaxed structural parameters are consistent with the experimental results. The bonding behavior, bond orders, Mulliken charges and bond populations as well as formation energies are obtained. The calculated band structures and density of states show that Mn incorporation results in some impurity energy levels of Mn 3d states in forbidden band as well as valence band and conduction band, and that Mn 3d states, for the modest Mn doping concentration, not only can act as the capture center of excited electrons under longer wavelength light irradiation, but also may trap the photo-excited holes, improving the transfer of photo-excited carriers to the reactive sites. Our calculated optical absorption spectra exhibit that the spectral absorption edge is obviously red-shifted and extends to the visible, red and infrared light region due to the incorporation of Mn. Our calculated absorption spectra are in excellent agreement with the experimental results of Mn-doped BiOCl photocatalyst.  相似文献   

12.
We investigate the optical properties of two-dimensional periodic arrays of well-aligned MgxZn1−xO nanowires, i.e., MgxZn1−xO nanowire photonic crystals. The nanowire photonic crystal can exhibit a photonic band gap in the visible range. As the mole fraction of Mg, x, increases, the edge frequencies of the band gap increase and the band gap size decreases. The characteristics of relative band gap and vacant point defect mode are also studied with varying x. From the finite-difference time-domain simulations, we show that the light extraction from nanowires can be controlled by varying the distance between optically excited nanowires and a waveguide, and the mole fraction of Mg. Controlling the light extraction from nanostructures can be useful in the implementation of nanoscale light emitting devices.  相似文献   

13.
Using the first principles calculations, the electronic and optical properties of C, Mo and Mo-C-doped anatase TiO2 are studied. For the Mo mono-doped TiO2, the band gap reduces little, and the largest perturbation occurs at the CBM of TiO2. C mono-doping suppresses the effective band gap, but the partially occupied subbands in the gap probably also serve as the recombination centers for electrons and holes. Therefore, the Mo-C co-doping is investigated for the charge compensation consideration. We discuss six doped configurations and find that the total energy of the system is increased with increasing distance of C and Mo. It is found that co-doped configurations with C nearest to Mo possess the lowest total energy. Then, we focus on discussing three possible Mo-C adjacent co-doped configurations. The subbands mainly induced by C-2p states in the band gap become fully occupied because the Mo atom contributes sufficient electrons to C anion for compensation. At the same time, the effective band gap is narrowed about 0.9 eV and the perturbation at the CBM occurred in Mo mono-doped TiO2 disappears, which means the band edges of doped system still straddle the redox potentials of water. Furthermore, the optical properties of the compensated Mo-C adjacent co-doped TiO2 and pure TiO2 are calculated. The optical absorption edges of the Mo-C co-doped TiO2 shift towards the visible light region.  相似文献   

14.
Under a large tensile strain near fracture limit, the band structures of single-wall carbon nanotubes (SWCNTs) with diameter less than 0.5 nm begin a metal to semiconductor transition and these ultra-small SWCNTs can normally maintain their metallicities. The band gap behavior of these SWCNTs intrinsically originates from the long axial direct bond lengths and the severe curvature. The gap opening comes mainly from the transfer of pπ electrons. And the localized π and σ states can result in a lower electrical conductivity. This band gap behavior suggests that it has potential to find applications in nano-electromechanical system.  相似文献   

15.
This paper reports on a study of the emission of ballistic photoelectrons from p-GaN(Cs,O) with an effective negative electron affinity. At photon energies less than the GaN band gap width, where emission of electrons originates from photoexcitation of surface and near-surface states, an increment in the energy of ballistic electrons is equal to that of exciting photons, which is substantiated by the dispersionless character of the initial states. At photon energies exceeding the band gap width, the excess energy of light is partitioned among the kinetic energies of ballistic photoelectrons and holes in accordance with their effective masses. This relation was used to determine the effective hole mass along the c axis of the GaN lattice of the wurtzite structure, which turned out to be m* h = (0.60 ± 0.15)m 0.  相似文献   

16.
《Solid State Ionics》1999,116(1-2):89-98
The electronic structures of hydrogen in SrTiO3 are simulated by the DV-Xα molecular orbital method. In pure SrTiO3, there is a band gap of about 3.5 eV between the O-2p valence band and the Ti-3d conduction band, in agreement with experiments. When Sc is doped into SrTiO3, an acceptor level appears just above the valence band. On the other hand, when hydrogen is introduced into SrTiO3, a donor level appears below the conduction band. The molecular orbital of the donor level is composed mostly of the Ti-3d and O-2p electrons, but still there is a small occupancy (6%∼12%) of the H-1s electrons in it. When both Sc and hydrogen coexist in SrTiO3, charge transfer takes place from the donor level to the acceptor level. As a result of this charge compensation, the effective ionicity of hydrogen becomes about +0.17∼+0.24, the value of which is dependent on the hydrogen positions in the crystal lattice. Also, the chemical bond strengths between constituent ions are modified largely by dopants. For example, the Sc doping tends to strengthen the chemical bond between hydrogen and oxygen ions, but instead to weaken the chemical bond between the oxygen ion and the surrounding metal ions. In addition, it is shown that an oxygen ion vacancy makes the defect level below the conduction band in the Sc-doped oxide.  相似文献   

17.
《Current Applied Physics》2018,18(2):200-208
The electronic structure and optical properties of La0.75Sr0.25MnO3-σ (LSMO3-σ) materials with 1 × 1 × 4 orthorhombic perovskite structure were performed by first-principles calculation. The structural changing of LSMO3 (ideal structure, σ = 0) was not obvious under generalized gradient approximation (GGA) and GGA + U arithmetic. On the contrary, the structural changing of LSMO3-σ (σ = 0.25, with oxygen vacancies defects in the z = 0, c/8, c/6, c/4, and c/2) with GGA + U were more obvious than the result of ideal. This structural distortion induced distinct changing in density of states (DOS) for LSMO3-σ materials. Oxygen vacancy defects caused a shift of the total density of states (TDOS) features toward low binding energies and LSMO3-σ keep half-metal properties as well as LSMO3 ideal structure. In addition, the hybridization between the Mn-eg and O-2p orbital was weakened and the partial density of states (PDOS) of Mn indicated a strong d-d orbital interaction. By the result of oxygen vacancy formation energy, oxygen vacancy defects can be more easily formed in La-O layers (z = 0 and c/6) to compare with other layers (z = c/8, c/4 and c/2). The calculation result of optical properties suggested that the ideal LSMO could be produced strong absorption in the range of ultraviolet and visible light, while the LSMO3-σ with oxygen vacancies defects were presented weak absorption in the range of visible light.  相似文献   

18.
Quasi-one-dimensional solid solutions of the composition Ti1 ? x Fe x O2 ? x/2 (0.005 ≤ x ≤ 0.050) with the anatase-type structure and extended aggregates have been prepared by the precursor method. The absorption spectra of the solid solutions have been investigated in the ultraviolet and visible regions, and the photocatalytic activity in the oxidation reaction of hydroquinone in water has been estimated. It has been found that the synthesized solid solutions serve as photocatalysts only under ultraviolet irradiation, and their photoactivity increases with an increase in the dopant concentration. The first-principles calculations of the electronic band structure and optical absorption in iron-doped anatase and rutile have been performed using the pseudopotential method LSDA + U (with the VASP software package). The on-site exchange-correlation parameters have been calibrated in the calculations of the electronic band structure of hematite α-Fe2O3 and ilmenite FeTiO3. It has been shown that, despite the appearance of impurity states within the band gap of anatase and rutile, doping with iron does not cause substantial absorption in the visible region, which correlates with the increase in photocatalytic activity only under ultraviolet irradiation. The most probable cause of the experimentally observed absorption in the visible region is the presence of finely dispersed hematite impurities in the obtained samples.  相似文献   

19.
《Physics letters. A》2020,384(26):126670
Semiconductors with suitable band gap are highly desirable for the applications in optoelectronic and energy conversion devices. In this work, using the recently developed strongly constrained and appropriately normed (SCAN) density functional calculations in conjunction with hybrid functional, we investigate the structural, electronic, and optical properties of earth abundant element based ZnO:ZnSnN2 compounds formed through alloying. The proposed ZnO:ZnSnN2 compounds in the low energy configurations possess band gaps of 2.28 eV-2.52 eV. The decrease in band gap compared to ZnO is mainly attributed to the p-d repulsion between N 2p+O 2p and Zn 3d electrons that lifts the top of valence band. For the ZnO:ZnSnN2 compounds studied the band edges straddle the water redox potentials and the absorption onsets lie in the visible light range. Our studies are helpful for ZnO:ZnSnN2 compounds' experimental synthesis and future application in optoelectronics and photocatalyst.  相似文献   

20.
The structure stability, magnetic, electronic, optical, and photocatalytic properties of nonmetal (B, C, N, P, and S), and halogen (F, Cl, Br, and I)-doped anatase TiO2 nanotubes (TNTs) have been investigated using spin polarized density functional theory. The N- and F-doped TNTs are the most stable among other doped TNTs. It is found that the magnetic moment of doped TNT is the difference between the number of the valence electrons of the dopant and host anion. All dopants decrease the band gap of TNT. The decrease in the band gap of nonmetal (C, N, P, and S)-doped TNTs, in particular N and P, is larger than that of halogen-doped TNTs due to the created states of the nonmetal dopant in the band gap. There is a good agreement between the calculation results and the experimental observations. Even though C-, N-, and P-doped TNTs have the lowest band gap, they cannot be used as a photocatalysis for water splitting. The B-, S-, and I-doped TiO2 nanotubes are of great potential as candidates for water splitting in the visible light range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号