首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this paper is to investigate the multi-pulse global bifurcations and chaotic dynamics for the nonlinear non-planar oscillations of a cantilever beam subjected to a harmonic axial excitation and two transverse excitations at the free end by using an extended Melnikov method in the resonant case. First, the extended Melnikov method for studying the Shilnikov-type multi-pulse homoclinic orbits and chaos in high-dimensional nonlinear systems is briefly introduced in the theoretical frame. Then, this method is utilized to investigate the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics for the nonlinear non-planar oscillations of the cantilever beam. How to employ this method to analyze the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications is demonstrated through this example. Finally, the results of numerical simulation are given and also show that the Shilnikov-type multi-pulse chaotic motions can occur for the nonlinear non-planar oscillations of the cantilever beam, which verifies the analytical prediction.  相似文献   

2.
The analysis on the chaotic dynamics of a six-dimensional nonlinear system which represents the averaged equation of a composite laminated piezoelectric rectangular plate is given for the first time. The theory of normal form and the energy-phase method are combined to investigate the higher-dimensional chaotic dynamics of the composite laminated piezoelectric rectangular plate. Firstly, the theory of normal form is used to reduce the six-dimensional averaged equation to the simpler normal form. Then, the energy-phase method is extended to analyze the global bifurcations and chaotic dynamics of a six-dimensional nonlinear system. The analysis results indicate that there exist the homoclinic bifurcation and Shilnikov type multi-pulse chaos for the composite laminated piezoelectric rectangular plate. Finally, numerical simulations are also used to investigate the nonlinear dynamic characteristics of the composite laminated piezoelectric rectangular plate. The results of numerical simulations also demonstrate that there exist the chaotic motions and the multi-pulse jumping orbits of the composite laminated piezoelectric rectangular plate.  相似文献   

3.
In this paper,the complicated dynamics and multi-pulse homoclinic orbits of a two-degree-of-freedom parametrically excited nonlinear nano-oscillator with coupled cubic nonlinearities are studied.The damping,parametrical excitation and the nonlinearities are regarded as weak.The averaged equation depicting the fast and slow dynamics is derived through the method of multiple scales.The dynamics near the resonance band is revealed by doing a singular perturbation analysis and combining the extended Melnikov method.We are able to determine the criterion for the existence of the multi-pulse homoclinic orbits which can form the Shilnikov orbits and give rise to chaos.At last,numerical results are also given to illustrate the nonlinear behaviors and chaotic motions in the nonlinear nano-oscillator.  相似文献   

4.
王炜  张琪昌  王雪娇 《物理学报》2009,58(8):5162-5168
利用规范形理论与待定固有频率寻求改善Melnikov函数分析非线性振动系统混沌阈值的简单方法,着重讨论参数与周期激励联合作用下具有主参数共振的三阱势能系统,建立了其Melnikov函数积分式.引入由待定固有频率形成的时间尺度变换,从同宿及异宿分岔两个角度获取系统的混沌临界值,使得非线性扰动量对于基频的影响有效地体现于Melnikov函数表达式中,进而结合相应的分析过程提高所得结果的计算精度.作为算例,对解析解与数值积分结果进行了对比,以验证提出方法的有效性与可行性. 关键词: 规范形 Melnikov方法 混沌 同宿分岔  相似文献   

5.
The atomic population oscillations between two Bose--Einstein condensates with time-dependent nonlinear interaction in a double-well potential are studied. We first analyse the stabilities of the system's steady-state solutions. And then in the perturbative regime, the Melnikov chaotic oscillation of atomic population imbalance is investigated and the Melnikov chaotic criterion is obtained. When the system is out of the perturbative regime, numerical calculations reveal that regulating the nonlinear parameter can lead the system to step into chaos via period doubling bifurcations. It is also numerically found that adjusting the nonlinear parameter and asymmetric trap potential can result in the running-phase macroscopic quantum self-trapping (MQST). In the presence of a weak asymmetric trap potential, there exists the parametric resonance in the system.  相似文献   

6.
周期参数扰动的T混沌系统同宿轨道分析   总被引:1,自引:0,他引:1       下载免费PDF全文
惠小健  王震  孙卫 《物理学报》2013,62(13):130507-130507
针对一类周期参数扰动的T混沌系统, 通过变换将系统转化为具有广义Hamilton结构的周期参数扰动的慢变系统, 运用Melnikov方法对系统的同宿轨道进行了分析计算, 并给出了系统的同宿轨道参数分支条件. 同时, 通过数值实验, 对周期参数扰动控制策略及同宿轨道进行了仿真, 验证了文中理论分析的正确性. 关键词: Hamilton系统 Melnikov方法 同宿轨道 周期参数扰动  相似文献   

7.
一类相对转动非线性动力系统的混沌运动   总被引:1,自引:0,他引:1       下载免费PDF全文
时培明  刘彬  侯东晓 《物理学报》2008,57(3):1321-1328
研究一类具有同宿轨道、异宿轨道的相对转动非线性动力系统的混沌运动. 建立具有非线性刚度、非线性阻尼和外扰激励作用的一类两质量相对转动非线性动力系统的动力学方程. 利用Melnikov方法讨论了系统的全局分岔和系统进入混沌状态的可能途径,给出了系统发生混沌的必要条件,并利用最大Lyapunov指数图,分岔图,Poincare截面图和相轨迹图进一步分析了系统的混沌行为. 关键词: 相对转动 非线性动力系统 混沌 Melnikov方法  相似文献   

8.
In this paper, the bifurcations and chaotic motions of higher-dimensional nonlinear systems are investigated for the nonplanar nonlinear vibrations of an axially accelerating moving viscoelastic beam. The Kelvin viscoelastic model is chosen to describe the viscoelastic property of the beam material. Firstly, the nonlinear governing equations of nonplanar motion for an axially accelerating moving viscoelastic beam are established by using the generalized Hamilton’s principle for the first time. Then, based on the Galerkin’s discretization, the governing equations of nonplanar motion are simplified to a six-degree-of-freedom nonlinear system and a three-degree-of-freedom nonlinear system with parametric excitation, respectively. At last, numerical simulations, including the Poincare map, phase portrait and Lyapunov exponents are used to analyze the complex nonlinear dynamic behaviors of the axially accelerating moving viscoelastic beam. The bifurcation diagrams for the in-plane and out-of-plane displacements via the mean axial velocity, the amplitude of velocity fluctuation and the frequency of velocity fluctuation are respectively presented when other parameters are fixed. The Lyapunov exponents are calculated to identify the existence of the chaotic motions. From the numerical results, it is indicated that the periodic, quasi-periodic and chaotic motions occur for the nonplanar nonlinear vibrations of the axially accelerating moving viscoelastic beam. Observing the in-plane nonlinear vibrations of the axially accelerating moving viscoelastic beam from the numerical results, it is found that the nonlinear responses of the six-degree-of-freedom nonlinear system are much different from that of the three-degree-of-freedom nonlinear system when all parameters are same.  相似文献   

9.
In this paper regular and chaotic oscillations in a controlled electromechanical transducer are investigated. The nonlinear control laws are defined by an electric tension excitation and an external force applied to the mobile piece of the transducer. The paper shows that an Andronov–Poincaré–Hopf bifurcation appears as long as adequate parameters are chosen for the nonlinear control laws. The stability of the weak focuses associated to such bifurcation is examined according to the sign of the first Lyapunov value, showing that chaotic behavior can arise when the first Lyapunov value is varied harmonically. The appearance of a homoclinic orbit is investigated assuming an approximated model for the device. On the basis of the parametric equations of the homoclinic orbit and the presence of harmonic disturbances on the platform, it is demonstrated that chaotic oscillations can also appear, and they have been examined by means of the Melnikov theory. Chaotic behavior is corroborated by means of the sensitive dependence, Lyapunov exponents and power spectral density, and it is applied to drive the transducer mobile piece to a predefined set point assuming that noise due to the measurement process can appear in the control signals. The steady-state error associated to such random noise is eliminated by adding a PI linear controller to the control force. Numerical simulations are used to corroborate the analytical results.  相似文献   

10.
Depending on the parameters of a parametrically forced pendulum system the boundaries of subharmonic and homoclinic bifurcations are calculated on the basis of the Melnikov method and of averaging methods. It is shown that, as a parameter is varied, repeated resonances of successively higher periods occur culminating in homoclinic orbits. According to the theorem of Smale homoclinic bifurcation is the source of the unstable chaotic motions observed. For some selected parameter sets the theoretical predictions are tested by numerical calculations. Very good agreement is found between analytical and numerical results.  相似文献   

11.
We consider the damped and driven dynamics of two interacting particles evolving in a symmetric and spatially periodic potential. The latter is exerted to a time-periodic modulation of its inclination. Our interest is twofold: First, we deal with the issue of chaotic motion in the higher-dimensional phase space. To this end, a homoclinic Melnikov analysis is utilised assuring the presence of transverse homoclinic orbits and homoclinic bifurcations for weak coupling allowing also for the emergence of hyperchaos. In contrast, we also prove that the time evolution of the two coupled particles attains a completely synchronised (chaotic) state for strong enough coupling between them. The resulting "freezing of dimensionality" rules out the occurrence of hyperchaos. Second, we address coherent collective particle transport provided by regular periodic motion. A subharmonic Melnikov analysis is utilised to investigate persistence of periodic orbits. For directed particle transport mediated by rotating periodic motion, we present exact results regarding the collective character of the running solutions entailing the emergence of a current. We show that coordinated energy exchange between the particles takes place in such a manner that they are enabled to overcome--one particle followed by the other--consecutive barriers of the periodic potential resulting in collective directed motion.  相似文献   

12.
《Physics letters. A》1987,121(3):116-120
The escape of a periodically driven damped oscillator from a potential well is intimately associated with homoclinic tangles, fractal basins, and a variety of chaotic bifurcations. A bifurcation diagram, including an analytical Melnikov solution is presented for a canonical asymmetric cubic potential, and comparisons are made with recent results for the Holmes two-well oscillator.  相似文献   

13.
This paper addresses the issues of nonlinear chemical dynamics modeled by a modified Van der Pol-Duffing oscillator with asymmetric potential. The Melnikov method is utilized to analytically determine the domains boundaries where Melnikov’s chaos appears in chemical oscillations. Routes to chaos are investigated through bifurcations structures, Lyapunov exponent, phase portraits and Poincaré section. The effects of parameters in general and in particular the effect of the constraint parameter β which shows the difference between a nonlinear chemical dynamics order two differential equation and ordinary Van der Pol-Duffing equation are analyzed. Results of analytical investigations are validated and complemented by numerical simulations.  相似文献   

14.
The chaotic dynamics of nonlinear waves in the harmonic-forced fluid-conveying pipe in primary parametrical resonance, is explored analytically and numerically. The multiple scale method is applied to obtain an equivalent nonlinear wave equation from the complicated nonlinear governing equation describing the fluid conveyed in a pipe. With the Melnikov method, the persistence of a heteroclinic structure is shown to be satisfied and its condition is given in functional form. Similarly, for the heteroclinic orbit, using geometric analysis, a condition function of the stable manifold is derived for the orbit to return to the stable manifold from the saddle point. The persistent homoclinic structures and threshold of chaos in the Smale-horseshoe sense are obtained for the fluid-conveying pipe under both conditions, indicating how the external excitation amplitude can change substantially the global dynamics of the fluid conveyed in the pipe. A numerical approach was used to test the prediction from theory. The impact of the external excitation amplitude on the nonlinear wave in the fluid-conveying pipe was also studied from numerical simulations. Both theoretical predications and numerical simulations attest to the complex chaotic motion of fluid-conveying pipes.  相似文献   

15.
丁虎  严巧赟  陈立群 《物理学报》2013,62(20):200502-200502
研究了黏弹性轴向运动梁在外部激励和参数激励共同作用下横向振动的混沌非线性动力学行为. 引入有限支撑刚度, 并考虑黏弹性本构关系取物质导数, 同时计入由梁轴向加速度引起的沿径向变化的轴力, 建立轴向运动黏弹性梁横向非线性振动的偏微分-积分模型. 通过Galerkin截断方法研究了外部激励的频率和因速度简谐脉动引起的参数激励的频率在不可通约关系时轴向运动连续体的非线性动力学行为, 并对不同截断阶数的数值预测进行了对比. 基于对控制方程的Galerkin截断, 得到离散化的常微分方程组, 使用四阶Runge-Kutta方法求解. 基于此数值解, 运用非线性动力学时间序列分析方法, 通过Poincaré 映射, 观察到轴向运动梁随扰动速度幅值的倍周期分岔现象, 并比较了有无外部激励对倍周期分岔的影响. 分别在低速以及近临界高速运动状态下, 从相平面图、Poincaré 映射以及频谱分析的角度识别了系统中存在的准周期运动形态. 关键词: 轴向运动梁 非线性 混沌 分岔  相似文献   

16.
时培明  韩东颖  刘彬 《中国物理 B》2010,19(9):90306-090306
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincar map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using non-feedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to period-motions by adding an excitation term.  相似文献   

17.
In this paper, the Melnikov analysis is extended to develop a practical model of gear system to control and eliminate the chaotic behavior. To this end, a nonlinear dynamic model of a spur gear pair with backlash, time-varying stiffness and static transmission error is established. Based on the Melnikov analysis the global homoclinic bifurcation and transition to chaos in this model are predicted. Then non-feedback control method is used to eliminate the chaos by applying an additional control excitation. The regions of the parameter space for the control excitation are obtained analytically. The accuracy of the theoretical predictions and also the performance of the proposed control system are verified by the comparison with the numerical simulations. The simulation results show effectiveness of the proposed control system and present some useful information to analyze and control the gear dynamical systems.  相似文献   

18.
Rational pole-solutions of a perturbed KdV equation, describing nonlinear ion-acoustic plasma waves, become chaotic in time, when a small perturbation is periodically driven. A McGehee transformation blows up a degenerate stationary point at infinity and the Smale-Birkhoff Homoclinic. Theorem adapted to submanifolds in phase permits the use of the Melnikov method, with pole-solutions being homoclinic orbits.  相似文献   

19.
We investigate the bifurcation phenomena and the change in phase space structure connected with the transition from regular to chaotic scattering in classical systems with unbounded dynamics. The regular systems discussed in this paper are integrable ones in the sense of Liouville, possessing a degenerated unstable periodic orbit at infinity. By means of a McGehee transformation the degeneracy can be removed and the usual Melnikov method is applied to predict homoclinic crossings of stable and unstable manifolds for the perturbed system. The chosen examples are the perturbed radial Kepler problem and two kinetically coupled Morse oscillators with different potential parameters which model the stretching dynamics in ABC molecules. The calculated subharmonic and homoclinic Melnikov functions can be used to prove the existence of chaotic scattering and of elliptic and hyperbolic periodic orbits, to calculate the width of the main stochastic layer and of the resonances, and to predict the range of initial conditions where singularities in the scattering function are found. In the second example the value of the perturbation parameter at which channel transitions set in is calculated. The theoretical results are supplemented by numerical experiments.  相似文献   

20.
The nonlinear dynamical effects of synchronization and bifurcations of Rabi oscillations and oscillations of the center of mass of an atom moving in the field of a standing light wave are theoretically and numerically examined. After completion of a transient process, synchronized oscillations, stable with respect to small noise, are established both upon ballistic motion of the atom and upon its oscillations in the optical potential well. The bifurcations of limit cycle generation with different periods (tripling of the period is most pronounced) and the passage to a chaotic strange attractor through an intermittency are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号