共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhong Weizhou Zhang Zexiong Chen Xiaowei Wei Qiang Chen Gang Huang Xicheng 《Acta Mechanica Sinica》2021,37(7):1136-1151
Acta Mechanica Sinica - Multi-scale finite element method is adopted to simulate wood compression behavior under axial and transverse loading. Representative volume elements (RVE) of wood... 相似文献
2.
《International Journal of Solids and Structures》1999,36(18):2757-2771
The objective of the current investigation is to develop a simple, yet generalized, model which considers the two-dimensional extent of woven fabric, and to have an interface with nonlinear finite element codes. A micromechanical composite material model for woven fabric with nonlinear stress-strain relations is developed and implemented in ABAQUS for nonlinear finite element structural analysis. Within the model a representative volume cell is assumed. Using the iso-stress and iso-strain assumptions the constitutive equations are averaged along the thickness direction. The cell is then divided into many subcells and an averaging is performed again by assuming uniform stress distribution in each subcell to obtain the effective stress–strain relations of the subcell. The stresses and strains within the subcells are combined to yield the effective stresses and strains in the representative cell. Then this information is passed to the finite element code at each material point of the shell element. In this manner structural analysis of woven composites can be performed. Also, at each load increment global stresses and strains are communicated to the representative cell and subsequently distributed to each subcell. Once stresses and strains are associated to a subcell they can be distributed to each constituent of the subcell i.e. fill, warp, and resin. Consequently micro-failure criteria (MFC) can be defined for each constituent of a subcell and the proper stiffness degradation can be modeled if desired. This material model is suitable for implicit and could be modified for explicit finite element codes to deal with problems such as crashworthiness, impact, and failure analysis under static loads. 相似文献
3.
Holger Schwaab Hannes Grünbichler Peter Supancic Marc Kamlah 《International Journal of Solids and Structures》2012,49(3-4):457-469
A new approach for modeling hysteretic non-linear ferroelectric ceramics is presented, based on a fully ferroelectric/ferroelastic coupled macroscopic material model. The material behavior is described by a set of yield functions and the history dependence is stored in internal state variables representing the remanent polarization and the remanent strain. For the solution of the electromechanical coupled boundary value problem, a hybrid finite element formulation is used. Inside this formulation the electric displacement is available as nodal quantity (i.e. degree of freedom) which is used instead of the electric field to determine the evolution of remanent polarization. This involves naturally the electromechanical coupling. A highly efficient integration technique of the constitutive equations, defining a system of ordinary differential equations, is obtained by a customized return mapping algorithm. Due to some simplifications of the algorithm, an analytical solution can be calculated. The automatic differentiation technique is used to obtain the consistent tangent operator. Altogether this has been implemented into the finite element code FEAP via a user element. Extensive verification tests are performed in this work to evaluate the behavior of the material model under pure electrical and mechanical as well as coupled and multi-axial loading conditions. 相似文献
4.
Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the fictitious crack model in fracture mechanics of concrete. The new analytical element can be implemented into FEM program systems to solve fictitious crack propagation problems for concrete cracked plates with arbitrary shapes and loads. Numerical results indicate that the method is more efficient and accurate than ordinary finite element method. 相似文献
5.
基于有限断裂法和比例边界有限元法提出了一种裂缝开裂过程模拟的数值模型。采用基于有限断裂法的混合断裂准则作为起裂及扩展的判断标准,当最大环向应力和能量释放率同时达到其临界值时,裂缝扩展。结合多边形比例边界有限元法,可以半解析地求解裂尖区域附近的应力场和位移场,在裂尖附近无需富集即可获得高精度的解。计算能量释放率时,只需将裂尖多边形内的裂尖位置局部调整,无需改变整体网格的分布,网格重剖分的工作量降至最少。裂缝扩展步长通过混合断裂准则确定,避免了人为假设的随意性,并可以实现裂缝变步长扩展的模拟,更符合实际情况。通过对四点剪切梁的复合型裂缝扩展过程的模拟,对本文模型进行了验证,并应用于重力坝模型的裂缝扩展模拟,计算结果表明,本文提出的模型简单易行且精度较高。 相似文献
6.
This paper describes a material model, in which the materials under consideration grow up in a particular direction while re-organizing themselves to the surroundings. The structural reorganization is modeled as the rearrangement of anisotropy. Two models are proposed; one is that the anisotropic vector is embedded just as in fiber-reinforced materials, and the other is that the vector behaves like a float. In order to apply the present model to boundary-value problems, a three-dimensional finite element formulation is obtained with reference to the total-Lagrangian approach. Here we evaluate the performance of the model in terms of anisotropic growth; (a) adaptation behavior of a quasi-isotropy in the initial state, and (b) monotonic growth in helical direction. 相似文献
7.
钢-混凝土混合框架结构多尺度分析及其建模方法 总被引:3,自引:0,他引:3
多尺度计算是保证计算精度的同时最大限度降低计算代价的有效途径,在众多学科领域和工程问题中都得到了应用.在结构有限元多尺度分析领域,要解决的一个关键问题是如何实现局部微观模型与宏观结构模型之间的共同工作.为实现精细有限元模型在植入宏观结构模型时不同尺度模型界面的变形协调,提出有限元微观模型与宏观模型的界面连接方法,给出了轴向、横向和转角的约束方程.通过编制用户子程序,使该方法在有限元软件中得以实现,并通过简单的圆柱筒算例,对界面连接的合理性进行了验证.最后基于多尺度建模方法和复杂混合结构节点的精细模型,给出了钢-混凝土混合框架结构多尺度弹塑性时程分析的应用实例,结果表明多尺度计算可较好模拟节点的复杂边界条件.本文建议的界面连接方法可有效实现不同尺度模型界面的变形协调,为工程结构进行多尺度提供了条件. 相似文献
8.
Hasan Charkas Hayder Rasheed Yacoub Najjar 《International Journal of Solids and Structures》2008,45(5):1244-1263
Material models are the key ingredients to accurately capture the global mechanical response of structural systems. The use of finite element analysis has proven to be effective in simulating nonlinear engineering applications. However, the choice of the appropriate material model plays a big role in the value of the numerical predictions. Such models are not expected to exactly reproduce global experimental response in all cases. Alternatively, the measured global response at specific domain or surface points can be used to guide the nonlinear analysis to successively extract a representative material model. By selecting an initial set of stress–strain data points, the load–displacement response at the monitoring points is computed in a forward incremental analysis without iterations. This analysis retains the stresses at the integration points. The corresponding strains are not accurate since the computed displacements are not anticipated to match the measured displacements at the monitoring points. Therefore, a corrective incremental displacement analysis is performed at the same load steps to adjust for displacements and strains everywhere by matching the measured displacements at the monitoring points. The stress–strain vectors at the most highly stressed integration point are found to establish an improved material model. This model is used within a multi-pass incremental nonlinear finite element analysis until the discrepancy between the measured and the predicted structural response at the monitoring points vanishes. The J2 flow theory of plasticity is used as a constitutive framework to build the tangent elastic–plastic matrices. The applicability of the proposed approach is demonstrated by solving 2D inverse continuum problems. The comparisons presented support the effectiveness of the proposed approach in accurately calibrating the J2 plasticity material model for such problems. 相似文献
9.
The present study aims at implementation of a strain rate dependent, non-linear, micro-mechanics material model for laminated, unidirectional polymer matrix composites into the explicit finite element code LSDYNA. The objective is to develop an accurate and simple micro-mechanical, rate dependent material model, which is computationally efficient. Within the model a representative volume cell is assumed. The stress-strain relation including rate dependent effects for the micro-model is derived for both shell elements and solid elements. Micro-failure criterion is presented for each material constituent and failure mode. The implemented model can deal with problems such as impact, crashworthiness, and failure analysis under quasi-static loads. The developed material model has a wide range of applications such as jet engine jackets, armor plates, and structural crashworthiness simulation. The deformation response of two representative composite materials with varying fiber orientation is presented using the described technique. The predicted results compare favorably to experimental values. 相似文献
10.
一种新型并行化有限元结构模态分析集成系统 总被引:1,自引:0,他引:1
以成熟有限元软件的模态分析流程和大型稀疏矩阵特征值的并行求解为基础,开发出一种基于大规模并行机的新型有限元结构模态分析系统。通过对串行CAE软件的二次开发,将模态分析过程中计算量最大的特征值求解部分代之以并行计算。针对并行机特性以隐式重启动Lanczos算法为基础,编写了基于MPI的特征值并行求解程序,并通过实际算例验证了并行程序的加速比和扩展性;同时实现并行程序与其它串行分析步骤的无缝集成,使集成系统的界面友好,操作方便。本系统使结构模态分析的规模和速度大幅度提高,以大型CAE软件MSC/NASTRAN为并行化求解器开发平台,在“神威Ⅰ”超级计算机上验证了其可行性和高效性。 相似文献
11.
In this study, two multi-scale analyses codes are newly developed by combining a homogenization algorithm and an elastic/crystalline viscoplastic finite element (FE) method (Nakamachi, E., 1988. A finite element simulation of the sheet metal forming process. Int. J. Numer. Meth. Eng. 25, 283–292; Nakamachi, E., Dong, X., 1996. Elastic/crystalline viscoplastic finite element analysis of dynamic deformation of sheet metal. Int. J. Computer-Aided Eng. Software 13, 308–326; Nakamachi, E., Dong, X., 1997. Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline viscoplastic finite element analysis. J. Appl. Mech. Trans. ASME(E) 64, 519–524; Nakamachi, E., 1998. Elastic/crystalline viscoplastic finite element modeling based on hardening–softening evaluation equation. In: Proc. of the 6th NUMIFORM, pp. 315–321; Nakamachi, E., Hiraiwa, K., Morimoto, H., Harimoto, M., 2000a. Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification. Int. J. Plasticity 16, 1419–1441; Nakamachi, E., Xie, C.L., Harimoto, M., 2000b. Drawability assessment of BCC steel sheet by using elastic/crystalline viscoplastic finite element analyses. Int. J. Mech. Sci. 43, 631–652); (1) a “semi-implicit” finite element (FE) code and (2) a “dynamic explicit” FE code. These were applied to predict the plastic strain induced yield loci and the formability of sheet metal in the macro scale, and simultaneously the crystal texture and hardening evolutions in the micro scale. The isotropic and kinematical hardening laws are employed in the crystalline plasticity constitutive equation. For the multi-scale structure, two-scales are considered. One is a microscopic polycrystal structure and the other a macroscopic elastic plastic continuum. We measure crystal morphologies by using the SEM-EBSD apparatus with a unit of about 3.8 μm voxel, and define a three dimensional (3D) representative volume element (RVE) for the micro polycrystal structure, which satisfy the periodicity condition of crystal orientation distribution. A “micro” finite element modeling technique is newly established to minimize the total number of finite elements in the micro scale. Next, the “semi-implicit” crystallographic homogenization FE code, which employs the SEM-EBSD measured RVE, is applied to the 99.9% pure-iron uni-axial tensile problem to predict the texture evolution and the subsequent yield loci in the various strain paths. These “semi implicit” results reveal that the plastic strain induced anisotropy in the micro and macro levels can be predicted by our FE analyses. The kinematical hardening law leads a distinct plastic strain induced anisotropy. Our “dynamic-explicit” FE code is applied to simulate the limit dome height (LDH) test problem of the mild steel DQSK, the high strength steel HSLA and the aluminum alloy AL6022 sheet metals, which were adopted as the NUMISHEET2005 Benchmark sheet metals (Smith, L.M., Pourboghrat, F., Yoon, J.-W., Stoughton, T.B., 2005. NUMISHEET2005. In: Proc. of 6th Int. Conf. Numerical Simulation of 3D Sheet Metal Forming Processes, PART A and B(Benchmark), pp. 409–451) to estimate formability. The “dynamic explicit” results reveal that the initial crystal orientation distribution has a large affects to a plastic strain induced texture and anisotropic hardening evolutions and sheet formability. 相似文献
12.
利用有限元特征分析法研究了平面各向异性材料裂纹端部的奇性应力指数以及应力场和位移场的角分布函数,以此构造了一个新的裂纹尖端单元。文中利用该单元建立了研究裂纹尖端奇性场的杂交应力模型,并结合Hellinger-Reissner变分原理导出应力杂交元方程,建立了求解平面各向异性材料裂纹尖端问题的杂交元计算模型。与四节点单元相结合,由此提出了一种新的求解应力强度因子的杂交元法。最后给出了在平面应力和平面应变下求解裂纹尖端奇性场的算例。算例表明,本文所述方法不仅精度高,而且适应性强。 相似文献
13.
We present a new closure model for single fluid, multi‐material Lagrangian hydrodynamics and its application to high‐order finite element discretizations of these equations 1 . The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high‐order variational generalization of the method of Tipton 2 . This computation is defined by the notion of partial non‐instantaneous pressure equilibration, while the full pressure equilibration is achieved by both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one‐dimensional two‐material problems, followed by two‐dimensional and three‐dimensional multi‐material high‐velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
14.
In this work, a simplified experimental calibration procedure of a tridilosa-type highway bridge finite element model is presented.
Under static loading conditions, vertical deflections and longitudinal stress values of bridge midspan bar elements were used
as reference parameters. Natural frequencies obtained through a finite element model are then compared with those obtained
through experimental measurements. Good experimental-model correlation for the first two frequencies and corresponding mode
shapes was obtained. Based on the results, improvements for future experimental instrumentation configurations and measurement
for these types of bridges are presented and discussed. 相似文献
15.
《International Journal of Plasticity》2004,20(4-5):619-642
Developing further the substructure models proposed by Mandel and Dafalias a thermodynamically consistent system of differential and algebraic equations is derived to describe anisotropic elasto-plastic material behavior at finite deformations. Based on the multiplicative split of the deformation gradient an appropriate material law is formulated applying the principle of the maximum of plastic dissipation. Generalized basic relations of this material model containing a relation of hyperelasticity, evolutional equations for the internal variables describing different kinds of hardening, and the yield condition are presented. The capacity of the proposed material model is demonstrated on the example of a sheet with a hole. Presenting the evolution of yield surfaces the capability of the model to describe anisotropic hardening behavior is shown. 相似文献
16.
《International Journal of Solids and Structures》2004,41(24-25):6853-6871
A high-order discrete-layer theory and a finite element are presented for predicting the damping of laminated composite sandwich beams. The new layerwise laminate theory involves quadratic and cubic terms for approximation of the in-plane displacement in each discrete layer, while interlaminar shear stress continuity is imposed through the thickness. Integrated damping mechanics are formulated and both laminate and structural stiffness, mass and damping matrices are formed. A finite element method and a beam element are further developed for predicting the free vibration response, including modal frequencies, modal loss factors and through-thickness mode shapes. Numerical results and evaluations of the present model are shown. Modal frequencies and damping of sandwich composite beams are measured and correlated with predicted values. Finally, parametric studies illustrate the effect of core thickness and face lamination on modal damping and frequency values. 相似文献
17.
Prof. Dr. P. G. Hodge Jr. 《Archive of Applied Mechanics (Ingenieur Archiv)》1970,39(6):375-382
Summary The finite element approximation to the continuum problem is examined from the viewpoint of the principle of virtual work. It is shown that the usual nodal equilibrium equations for triangular elements are a consistent consequence of a piecewise constant strain field, thus guaranteeing that many results of general continuum theory can be directly applied to the finite element model, and also clarifying the relation between the two models.
Dedicated to Professor Dr. H. Ziegler on the occasion of his 60th birthday.
This research was sponsored by the National Science Foundation, Grant GK 10549. 相似文献
Übersicht Das Verfahren, ein Kontinuum durch finite Elemente anzunähern wird vom Standpunkt des Prinzips der virtuellen Arbeiten untersucht. Es wird gezeigt, daß die üblichen Knotenpunktsgleichungen für dreieckförmige Elemente eine Folge des stückweise konstanten Verformungsfeldes sind. Auf diese Weise wird sichergestellt, daß viele Ergebnisse der allgemeinen Kontinuumstheorie unmittelbar auf das aus endlichen Elementen aufgebaute Modell übertragen werden können. Gleichzeitig werden die Beziehungen zwischen beiden Modellen geklärt.
Dedicated to Professor Dr. H. Ziegler on the occasion of his 60th birthday.
This research was sponsored by the National Science Foundation, Grant GK 10549. 相似文献
18.
Cracking analysis of fracture mechanics by the finite element method of lines (FEMOL) 总被引:1,自引:0,他引:1
The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods.
First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack
plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile
and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD)
are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved
by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So
it is a very useful and new tool in studying fracture mechanics problems.
The English text was polished by Yunming Chen. 相似文献
19.
This paper presents a multi-scale model in phase transitions of solid materials with both macro and micro effects. This model is governed by a semi-linear nonconvex partial differential equation which can be converted into a coupled quadratic mixed variational problem by the canonical dual transformation method. The extremality conditions of this variational problem are controlled by a triality theory, which reveals the multi-scale effects in phase transitions. Therefore, a potentially useful canonical dual finite element method is proposed for the first time to solve the nonconvex variational problems in multi-scale phase transitions of solids. Applications are illustrated. Results shown that the canonical duality theory developed by the first author in nonconvex mechanics can be used to model complicated physical phenomena and to solve certain difficult nonconvex variational problems in an easy way. The canonical dual finite element method brings some new insights into computational mechanics. 相似文献
20.
Reviewed in this work are the methods of finite and boundary element as applied to solve fracture mechanics problems. The former requires the discretization of the interior of the domain while the latter involves computing an integral equation over the boundary of the domain. Applications of these methods are made to two-dimensional elastic crack problems. Efficiency and accuracy of different approaches are discussed and compared by examples. The boundary element procedure employing special Green's functions for the plane crack problem is shown to be superior. The correlation between the hybrid element formulations and boundary element regions embedded into a finite element model is also given. 相似文献