首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maximum nullity over a collection of matrices associated with a graph has been attracting the attention of numerous researchers for at least three decades. Along these lines various zero forcing parameters have been devised and utilized for bounding the maximum nullity. The maximum nullity and zero forcing number, and their positive counterparts, for general families of line graphs associated with graphs possessing a variety of specific properties are analysed. Building upon earlier work, where connections to the minimum rank of line graphs were established, we verify analogous equations in the positive semidefinite cases and coincidences with the corresponding zero forcing numbers. Working beyond the case of trees, we study the zero forcing number of line graphs associated with certain families of unicyclic graphs.  相似文献   

2.
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented.  相似文献   

3.
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise; maximum nullity is taken over the same set of matrices. The zero forcing number is the minimum size of a zero forcing set of vertices and bounds the maximum nullity from above. The spread of a graph parameter at a vertex v or edge e of G is the difference between the value of the parameter on G and on G-v or G-e. Rank spread (at a vertex) was introduced in [4]. This paper introduces vertex spread of the zero forcing number and edge spreads for minimum rank/maximum nullity and zero forcing number. Properties of the spreads are established and used to determine values of the minimum rank/maximum nullity and zero forcing number for various types of grids with a vertex or edge deleted.  相似文献   

4.
For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.  相似文献   

5.
The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. In this paper, we obtain the nullity set of bicyclic graphs of order n, and determine the bicyclic graphs with maximum nullity.  相似文献   

6.
图的零度是指在图的谱中特征值0的重数.在文献[2]中作者给出了刻画非奇异单圈图的充分条件,并提出了一个问题,即这个条件是否也是必要的.在本文中,我们先对这个问题作出肯定回答,然后介绍一个新的概念:保留点,最后通过最大匹配数给出公式计算单圈图的零度.  相似文献   

7.
Tree‐width, and variants that restrict the allowable tree decompositions, play an important role in the study of graph algorithms and have application to computer science. The zero forcing number is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by a graph. We establish relationships between these parameters, including several Colin de Verdière type parameters, and introduce numerous variations, including the minor monotone floors and ceilings of some of these parameters. This leads to new graph parameters and to new characterizations of existing graph parameters. In particular, tree‐width, largeur d'arborescence, path‐width, and proper path‐width are each characterized in terms of a minor monotone floor of a certain zero forcing parameter defined by a color change rule.  相似文献   

8.
The nullity of a graph is defined to be the multiplicity of the eigenvalue zero in the spectrum of the adjacency matrix of the graph. In this paper, we obtain the nullity set of bipartite graphs of order n, and characterize the bipartite graphs with nullity n-4 and the regular bipartite graphs with nullity n-6.  相似文献   

9.
The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. We obtain some lower bounds for the nullity of graphs and we then find the nullity of bipartite graphs with no cycle of length a multiple of 4 as a subgraph. Among bipartite graphs on n vertices, the star has the greatest nullity (equal to n − 2). We generalize this by showing that among bipartite graphs with n vertices, e edges and maximum degree Δ which do not have any cycle of length a multiple of 4 as a subgraph, the greatest nullity is . G. R. Omidi: This research was in part supported by a grant from IPM (No.87050016).  相似文献   

10.
The nullity of a graph is defined as the multiplicity of the eigenvalue zero in the spectrum of the adjacency matrix of the graph. We investigate a class of graphs with pendant trees, and express the nullity of such graph in terms of that of its subgraphs. As an application of our results, we characterize unicyclic graphs with a given nullity.  相似文献   

11.
Let G be a simple graph of order n and A(G) be its adjacency matrix. The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in the spectrum of A(G). Denote by Ck and Lk the set of all connected graphs with k induced cycles and the set of line graphs of all graphs in Ck, respectively. In 1998, Sciriha [I. Sciriha, On singular line graphs of trees, Congr. Numer. 135 (1998) 73-91] show that the order of every tree whose line graph is singular is even. Then Gutman and Sciriha [I. Gutman, I. Sciriha, On the nullity of line graphs of trees, Discrete Math. 232 (2001) 35-45] show that the nullity set of L0 is {0,1}. In this paper, we investigate the nullity of graphs with cut-points and deduce some concise formulas. Then we generalize Scirihas' result, showing that the order of every graph G is even if such a graph G satisfies that G∈Ck and η(L(G))=k+1, and the nullity set of Lk is {0,1,…,k,k+1} for any given k, where L(G) denotes the line graph of the graph G.  相似文献   

12.
Given a graph G we are interested in studying the symmetric matrices associated to G with a fixed number of negative eigenvalues. For this class of matrices we focus on the maximum possible nullity. For trees this parameter has already been studied and plenty of applications are known. In this work we derive a formula for the maximum nullity and completely describe its behavior as a function of the number of negative eigenvalues. In addition, we also carefully describe the matrices associated with trees that attain this maximum nullity. The analysis is then extended to the more general class of unicyclic graphs. Further our work is applied to re-describing all possible partial inertias associated with trees, and is employed to study an instance of the inverse eigenvalue problem for certain trees.  相似文献   

13.
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G)?n-2 if G is a simple graph on n vertices and G is not isomorphic to nK1. The extremal graphs attaining the upper bound n-2 and the second upper bound n-3 have been obtained. In this paper, the graphs with nullity n-4 are characterized. Furthermore the tricyclic graphs with maximum nullity are discussed.  相似文献   

14.
The nullity of a graph G is defined to be the multiplicity of the eigenvalue zero in its spectrum. In this paper we characterize the unicyclic graphs with nullity one in aspect of its graphical construction.  相似文献   

15.
A mixed graph means a graph containing both oriented edges and undirected edges. The nullity of the Hermitian-adjacency matrix of a mixed graph G, denoted by ηH(G),is referred to as the multiplicity of the eigenvalue zero. In this paper, for a mixed unicyclic graph G with given order and matching number, we give a formula on ηH(G), which combines the cases of undirected and oriented unicyclic graphs and also corrects an error in Theorem 4.2 of [Xueliang LI, Guihai YU. The skew-rank of oriented graphs. Sci. Sin. Math., 2015, 45:93-104(in Chinese)]. In addition, we characterize all the n-vertex mixed graphs with nullity n-3, which are determined by the spectrum of their Hermitian-adjacency matrices.  相似文献   

16.
Let Γ be a signed graph and A(Γ) be the adjacency matrix of Γ. The nullity ofΓ is the multiplicity of eigenvalue zero in the spectrum of A(Γ). In this paper, the connected bicyclic signed graphs(including simple bicyclic graphs) of order n with nullity n-7 are completely characterized.  相似文献   

17.
In this paper we introduce a class of regular bipartite graphs whose biadjacency matrices are circulant matrices – a generalization of circulant graphs which happen to be bipartite – and we describe some of their properties. Notably, we compute upper and lower bounds for the zero forcing number for such a graph based only on the parameters that describe its biadjacency matrix. The main results of the paper characterize the bipartite circulant graphs that achieve equality in the lower bound and compute their minimum ranks.  相似文献   

18.
Let G be a graph that admits a perfect matching M. A forcing set S for a perfect matching M is a subset of M such that it is contained in no other perfect matchings of G. The smallest cardinality of forcing sets of M is called the forcing number of M. Computing the minimum forcing number of perfect matchings of a graph is an NP-complete problem. In this paper, we consider boron-nitrogen (BN) fullerene graphs, cubic 3-connected plane bipartite graphs with exactly six square faces and other hexagonal faces. We obtain the forcing spectrum of tubular BN-fullerene graphs with cyclic edge-connectivity 3. Then we show that all perfect matchings of any BN-fullerene graphs have the forcing number at least two. Furthermore, we mainly construct all seven BN-fullerene graphs with the minimum forcing number two.  相似文献   

19.
单圈图的零度的一个注记   总被引:1,自引:0,他引:1  
The number of zero eigenvalues in the spectrum of the graph G is called its nullity and is denoted by η(G).In this paper,we determine the all extremal unicyclic graphs achieving the fifth upper bound n-6 and the sixth upperbound n-7.  相似文献   

20.
Zero forcing (also called graph infection) on a simple, undirected graph G is based on the color-change rule: if each vertex of G is colored either white or black, and vertex v is a black vertex with only one white neighbor w, then change the color of w to black. A minimum zero forcing set is a set of black vertices of minimum cardinality that can color the entire graph black using the color change rule. The propagation time of a zero forcing set B of graph G is the minimum number of steps that it takes to force all the vertices of G black, starting with the vertices in B black and performing independent forces simultaneously. The minimum and maximum propagation times of a graph are taken over all minimum zero forcing sets of the graph. It is shown that a connected graph of order at least two has more than one minimum zero forcing set realizing minimum propagation time. Graphs G having extreme minimum propagation times |G|?1, |G|?2, and 0 are characterized, and results regarding graphs having minimum propagation time 1 are established. It is shown that the diameter is an upper bound for maximum propagation time for a tree, but in general propagation time and diameter of a graph are not comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号