首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient infrared emissions near the second telecommunication window in Ho3+-doped multicomponent heavy-metal gallate (MHG) glasses have been observed. The maximum stimulated emission cross-sections are calculated to be 2.94×10?21 and 2.08×10?21 cm2 for 1200 and 1390 nm emissions, respectively. Excitation spectra reveal that the 642 and 538 nm wavelengths are practical pumping conditions for 1.2 and 1.39 μm emissions, respectively. Gain cross-sections are evaluated and positive gain bands have been anticipated. The theoretical gain results indicate that the appealing infrared emissions near the second telecommunication window from Ho3+-doped MHG glasses with low maximum phonon energy of ~660 cm?1 make them attractive in developing ~1.2 μm and E-band (1360–1460 nm) optical amplifiers.  相似文献   

2.
We report on the luminescence quenching mechanism of Eu-doped GaN powder phosphor produced with a low-cost, high yield rapid-ammonothermal method. We have studied as-synthesized and acid rinsed Eu-doped GaN powders with the Eu concentration of ~0.5 at.%. The Eu-doped GaN photoluminescence (PL) was investigated with 325 nm excitation wavelength at hydrostatic pressures up to 7.7 GPa in temperature range between 12 K and 300 K. The room temperature integrated Eu3+ ion PL intensity from acid rinsed material is a few times stronger than from the as-synthesized material. The temperature dependent PL studies revealed that the thermal quenching of the dominant Eu3+ ion transition (5D0  7F2) at 622 nm is stronger in the chemically modified phosphor indicating more efficient coupling between the Eu3+ ion and passivated GaN powder grains. Furthermore, it was found that thermal quenching of Eu3+ ion emission intensity can be completely suppressed in studied materials by applied pressure. This is due to stronger localization of bound exciton on Eu3+ ion trap induced by hydrostatic pressure. Furthermore, the effect of 2 MeV oxygen irradiation on the PL properties has been investigated for highly efficient Eu-doped GaN phosphor embedded in KBr–GaN:Eu3+ composite. Fairly good radiation damage resistance was obtained for 1.7 × 1012 to 5 × 1013 cm?2 oxygen fluence. Preliminary data indicate that Eu-doped GaN powder phosphor can be considered for devices in a radiation environment.  相似文献   

3.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

4.
Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors, Ca0.736?ySi9.6Al2.4O0.8N15.2:0.064 Eu2+, yMn2+, were firstly synthesized by the high temperature solid state reaction method. The effects of doped Eu2+ and Eu2+–Mn2+ concentrations on the photoluminescence properties of the as-prepared phosphors were investigated systematically. Powder X-ray diffraction shows that pure Ca-α-SiAlON phase is synthesized after sintering at 1700 °C for 2 h under 0.5 MPa N2 atmosphere. The excitation spectra of Eu2+-doped Ca-α-SiAlON phosphors are characterized by two dominant bands centered at 286 nm and 395 nm, respectively. The photoluminescent spectrum of Eu2+-doped Ca-α-SiAlON phosphor exhibits an intense emission band centered at 580 nm due to the allowed 4f 65d→4f 7 transition of Eu2+, showing that the phosphor is a good candidate for creating white light when coupled to a blue LED chip. The intensities of both excitation and emission spectra monotonously decrease with the increment of codoped Mn2+ content (i.e. y value), indicating that energy transfer between Eu2+ and Mn2+ is inefficient in the case of Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors.  相似文献   

5.
Eu3+-doped alkaline-earth tungstates MWO4 (M=Ca2+, Sr2+, Ba2+) were prepared by a polymeric precursor method based on the Pechini process. The polymeric precursors were calcined at 700 °C for 2 h in order to obtain well-crystallized powders and then characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and photoluminescence spectroscopy (PL). All prepared samples showed a pure crystalline phase with scheelite-type structure confirmed by XRD. It was noted that the charge-transfer band shifted from 260 to 283 nm when calcium is replaced by strontium. However, this band was not observed for Eu3+-doped barium tungstate. Upon excitation at 260 nm, the emission spectra are dominated by the red 5D07F2 transition at 618 nm. By analyzing of the emission lines, it was inferred that Eu3+ ions occupy low symmetry sites in the host lattice. It was also found that Eu3+-doped SrWO4 displays better chromaticity coordinates and greater luminescence intensity than the other samples.  相似文献   

6.
Structural changes of metals (Zn, Sb, In, Ga) and metal halides (AgI, ZnI2, CdI2, PbI2, BiI3) modified GeTe4 glasses were investigated with the aid of Raman spectroscopy. The Raman spectra of these glasses in the frequency region between 100 cm?1 and 300 cm?1 display four main bands at about 124, 140, 159 and 275 cm?1 which are contributed by Ge–Te, Te–Te, Te–Te and Ge–Ge vibration modes. The intensity of 159 cm?1 and 275 cm?1 bands vary with the addition of different glass modifiers. While the relative intensity of the 124 cm?1 and 140 cm?1 bands are insensitive to composition changes. Glass modifiers like Zn, In and Sb act as glass network unstabilizer which will disorganize the glass network by opening up the chain structures of Ge–Te and Te–Te. In the case of Ga and metal halides, Ga can open up Ge–(Te–Te)4/2 tetrahedra and form Ga–(Te–Te)3/2 triangle. Iodine can form covalent bonds with tellurium and decrease the tendency of microcrystal formation. Thus both Ga and iodine ultimately act as glass network stabilizer.  相似文献   

7.
High-quality Bi2Te3 microcrystals have been grown by physical vapor transport (PVT) method without using a foreign transport agent. The microcrystals grown under optimal temperature gradient are well facetted and they have dimensions up to ~100 μm. The phase composition of grown crystals has been identified by X-ray single crystal structure analysis in space group R3?m, a=4.3896(2) Å, b=30.5019(10) Å, Z=3 (R=0.0271). Raman microspectrometry has been used to describe the vibration parameters of Bi2Te3 microcrystals. The FWHM parameters obtained for representative Raman lines at 61 cm?1 and 101 cm?1 are as low as 3.5 cm?1 and 4.5 cm?1, respectively.  相似文献   

8.
This paper reports on a facile technique combined with a simple, sensitive and selective spectrofluorimetric method for the determination of hydrochlorothiazide. In methanol, at pH 8.3 and λex=340, hydrochlorothiazide can remarkably enhance the luminescence intensity of the Eu3+ ion doped in polymethylmethacrylate polymer (PMMA) matrix. This could be due to the energy transfer from hydrochlorothiazide to Eu3+ in the excited stated. At the optimized experimental conditions, the enhancement of the characteristic emission band (617 nm) of Eu3+ ion doped PMMA is directly proportional to the concentration of hydrochlorothiazide with a dynamic range of 5×10?8–1.0×10?5 mol L?1 and detection limit of 8.0×10?9 mol L?1. Application of the suggested method was successfully applied to the determination of hydrochlorothiazide in pharmaceutical preparations and human serum samples, with high percentage of recovery, good accuracy and precision.  相似文献   

9.
Pure samples of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0015 cm?1) infrared spectra have been recorded for these nonpolar molecules in the gas phase. For the cis,cis isomer, the rotational structure in two C-type bands at 775 and 666 cm?1 and one A-type band at 866 cm?1 has been analyzed to yield a combined set of 2020 ground state combination differences (GSCDs). Ground state rotational constants fit to these GSCDs are A0 = 0.4195790(4), B0 = 0.0536508(8), and C0 = 0.0475802(9) cm?1. For the trans,trans isomer, three C-type bands at 856, 839, and 709 cm?1 have been investigated to give a combined set of 1624 GSCDs. Resulting ground state rotational constants for this isomer are A0 = 0.9390117(8), B0 = 0.0389225(4), and C0 = 0.0373778(3) cm?1. Small inertial defects confirm the planarity of both isomers in the ground state. Upper state rotational constants have been determined for most of the transitions. The ground state rotational constants for the two isotopologues will contribute to the data set needed for determining semiexperimental equilibrium structures for the nonpolar isomers of 1,4-difluorobutadiene.  相似文献   

10.
The nonlinear optical properties of Sudan I were investigated by a single beam Z-scan technique. The Sudan I ethanol solution exhibited large nonlinear refractive indices under both CW and pulse laser excitations. The nonlinear refractive indices of Sudan I were in the order of ?10?8 cm2/W under CW 633 nm excitation and ?10?6 cm2/W under CW 488 nm excitation, respectively. Under the excitation of a pulse 532 nm laser, the nonlinear refractive index n2 was calculated to be 1.19 × 10?14 cm2/W. It was discussed that the mechanism accounting for the process of nonlinear refraction was attributed to the laser heating for the CW laser excitation and the electronic effect for the pulse excitation. Moreover, the second hyperpolarizability of Sudan I was also estimated in this paper.  相似文献   

11.
Emission spectra of SrH and SrD have been studied at high resolution using a Fourier transform spectrometer. The molecules have been produced in a high temperature furnace from the reaction of strontium metal vapor with H2/D2 in the presence of a slow flow of Ar gas. The spectra observed in the 18 000–19 500 cm?1 region consist of the 0–0 and 1–1 bands of the E2Π–X2Σ+ transition of the two isotopologues. A rotational analysis of these bands has been obtained by combining the present measurements with previously available pure rotation and vibration–rotation measurements for the ground state, and improved spectroscopic constants have been obtained for the E2Π state. The present analysis provides spectroscopic constants for the E2Π state as ΔG(½) = 1166.1011(15) cm?1, Be = 3.805503(32) cm?1, αe = 0.098880(47) cm?1, re = 2.1083727(89) Å for SrH, and ΔG(½) = 839.1283(23) cm?1, Be = 1.918564(15) cm?1, αe = 0.034719(23) cm?1, re = 2.1121943(83) Å for SrD.  相似文献   

12.
Doped lanthanum manganese chromite based perovskite, La0.7A0.3Cr0.5Mn0.5O3 ? δ (LACM, A = Ca, Sr, Ba), on yttria-stabilized zirconia (YSZ) electrolyte is investigated as potential electrode materials for solid oxide fuel cells (SOFCs). The electrical conductivity and electrochemical activity of LACM depend on the A-site dopant. The best electrochemical activity is obtained on the La0.7Ca0.3Cr0.5Mn0.5O3 ? δ/YSZ (LCCM/YSZ) composite electrodes. The conductivity of LCCM is 29.9 S cm? 1 at 800 °C in air, and the electrode polarization resistance (RE) of the LCCM/YSZ composite cathode for the O2 reduction reaction is 0.5 Ω cm2 at 900 °C. The effect of Gd-doped ceria (GDC) impregnation on the LCCM cathode polarization resistances is also studied. GDC impregnation significantly enhances the electrochemical activity of the LCCM cathode. In the case of the 6.02 mg cm? 2 GDC-impregnated LCCM cathode, RE is 0.4 Ω cm2 at 800 °C, ~ 60 times smaller than 24.4 Ω cm2 measured on a LCCM cathode without the GDC impregnation. Finally the electrochemical activities of the doped lanthanum manganese chromites for the H2 oxidation reaction are also investigated.  相似文献   

13.
Hexagonal Ba1.20Ca0.8?2x?ySiO4:xCe3+,xLi+,yMn2+ phosphors exhibit two emission bands peaking near 400 and 600 nm from the allowed f–d transition of Ce3+ ions and the forbidden 4T16A1 transition of Mn2+ ions, respectively. The strong interaction between Ce3+/Mn2+ ions is investigated in terms of energy transfer, crystal field effect, and microstructure by varying their concentrations. They show a higher quenching temperature of 250 °C than that of a commercially used (Ba,Sr)2SiO4:Eu2+ phosphor (150 °C). Finally, mixtures of these phosphors with green-emissive Ba1.20Ca0.70SiO4:0.10Eu2+ are tested and yielded correlated color temperatures from 3500 to 7000 K, and color rendering indices up to 95%.  相似文献   

14.
The hot band 3ν9?ν9 of the isotopologue 11BF2OH (difluoroboric acid) located at 1034.78 cm?1 was investigated for the first time by Fourier transform infrared spectroscopy. During previous studies both, the ν9 mode (OH-torsion relative to the BF2 moiety, at 522.87 cm?1) and the ν4 mode (in-plane OH bend) had been shown to exert large amplitude motion, and splittings of 0.0051 and 0.0038 cm?1 had been observed in the interacting 2ν9 and ν4 bands located at 1042.87 and 961.49 cm?1, respectively. The present work establishes large amplitude effects also for the 93 excited state located at 1557.655 cm?1. Numerous P and R transitions of the 3ν9ν9 hot band were identified in the 2ν9 manifold, and doublets corresponding to a torsional splitting of 0.031 cm?1 in the 93 state were observed. The vibrational assignment of the 93 state was confirmed by the detection of the 3ν9?2ν9 hot band Q branch in the 19 μm region.  相似文献   

15.
A new spectroflurometric method for the determination of adenosine disodium triphosphate (ATP) is developed. Fluorometric interaction between ATP and enoxacin (ENX)–Eu3+ complex was studied using UV–vis and fluorescence spectroscopy. Weak luminescence spectra of Eu3+ were enhanced after complexation with ENX at 589 nm and 614 nm upon excitation at 395 nm due to energy transfer from the ligand to the lanthanide ion. It was observed that luminescence spectrum of Eu3+ was strongly enhanced further at 614 nm after incorporation of ATP into the ENX–Eu3+ complex. Under optimal conditions, the enhancement of luminescence at 614 nm was responded linearly with the concentration of ATP. The linearity was maintained in the range of 1.5×10?10–1.15×10?8 M (R=0.9973) with the limit of detection (3σ) of 4.71×10?11 M. The relative standard deviation (RSD) for 9 repeated measurements of 1×10?9  M ATP was 1.25%. Successful determinations of ATP in soil, milk, and a pharmaceutical formulation with the proposed method were demonstrated.  相似文献   

16.
Nanoparticles of Mg2SiO4:Eu3+ have been prepared by the solution combustion technique and the grain size estimated by PXRD is found to be in the range 40–50 nm. Ionoluminescence (IL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ ions with fluences in the range 1.124–22.48×1012 ions cm?2 are carried out at IUAC, New Delhi, India. Five prominent IL bands with peaks at 580 nm, 590 nm, 612 nm, 655 nm and 705 nm are recorded. These characteristic emissions are attributed to the luminescence centers activated by Eu3+ cations. It is found that IL intensity decreases rapidly in the beginning. Later on, the intensity decreases slowly with further increase of ion fluence. The reduction in the ionoluminescence intensity with increase of ion fluence might be attributed to degradation of Si–O (ν3) and Si–O (2ν3) bonds present on the surface of the sample. The red emission with peak at 612 nm is due to characteristic emission of 5D07F2 of the Eu3+ cations. Thermoluminescence (TL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ cations with fluences in the range 5×1011 ions cm?2 to 5×1013 ions cm?2 are made at RT. Two prominent and well resolved TL glows with peaks at ~220 °C and ~370 °C are observed. It is observed that TL intensity increases with increase of ion fluence. This might be due to creation of new traps during swift heavy ion irradiation.  相似文献   

17.
Nearly 4800 features of ammonia between 6300 and 7000 cm?1 with intensities ≥4×10?24 cm?1/(molecule·cm?2) at 296 K were measured using 16 pure NH3 spectra recorded at various temperatures (296–185 K) with the McMath–Pierce Fourier Transform Spectrometer at Kitt Peak National Observatory, AZ. The line positions and intensities were retrieved by fitting individual spectra based on a Voigt line shape profile and then averaging the values to form the experimental linelist. The integrated intensity of the region was 4.68×10?19 cm?1/(molecule·cm?2) at 296 K. Empirical lower state energies were also estimated for 3567 absorption line features using line intensities retrieved from 10 spectra recorded at gas temperature between 185 and 233 K. Finally, using Ground State Combination Differences (GSCDs) and the empirical lower state energy estimates, the quantum assignments were determined for 1096 transitions in the room temperature linelist, along with empirical upper state energies for 434 levels. The assignments correspond to seven vibrational states, as confirmed from recent ab initio calculations. The resulting composite database of 14NH3 line parameters will provide experimental constraints to ab initio calculations and support remote sensing of gaseous bodies including the atmospheres of Earth, (exo)planets, brown dwarfs, and other astrophysical environments.  相似文献   

18.
《Solid State Ionics》2009,180(40):1702-1709
Nanopowders of Ca1  xEuxMnO3 (0.1  x  0.4) manganites were synthesized as a single phase using the auto gel-combustion method. The citrate method shows to be simple and appropriate to obtain single phases avoiding segregation or contamination. The Ca1  xEuxMnO3 system has been synthesized at 800 °C during 18 h, against the conventional method of mixing oxides used to obtain these materials at higher temperatures of synthesis. The formation reaction was monitored by X-ray diffraction (XRD) analysis and an infrared absorption technique (FTIR). The polycrystalline powders are characterised by nanometric particle size, ∼ 48 nm as determined from X-ray line broadening analysis using the Scherrer equation. Morphological analysis of the powders, using the scanning electron microscope (SEM), revealed that all phases are homogeneous and the europium-substituted samples exhibit a significant decrease in the grain size when compared with the undoped samples. The structure refinement by using the Rietveld method indicates that the partial calcium substitution by europium (for x  0.3) modifies the orthorhombic structure of the CaMnO3 perovskite towards a monoclinic phase. All manganites show two active IR vibrational modes around 400 and 600 cm 1. The high temperature dependence of electrical resistivity (between 25 and 600 °C) allows us to conclude that all the samples exhibit a semiconductor behaviour and the europium causes a decrease in the electrical resistivity by more than one order of magnitude. The results can be well attributed to the Mn4+/Mn3+ ratio.  相似文献   

19.
We report on effective sulfur-based passivation treatments of type-II InAs/GaSb strained layer superlattice detectors (100% cut-off wavelength is 9.8 μm at 77 K). The electrical behavior of detectors passivated by electrochemical sulfur deposition (ECP) and thioacetamide (TAM) was evaluated for devices of various sizes. ECP passivated detectors with a perimeter-to-area ratio of 1600 cm?1 exhibited superior performance with surface resistivity in excess of 104 Ω cm, dark current density of 2.7 × 10?3 A/cm2, and specific detectivity improved by a factor of 5 compared to unpassivated devices (VBias =  ? 0.1 V, 77 K).  相似文献   

20.
Yb-doped PbClF crystals were obtained by a modified Bridgman method. Broadband emission (FWHM=58 nm) with long lifetime (5.33 ms) was observed in 2.0% Yb3+-doped PbClF crystals. The Stark splitting of Yb3+ 2F7/2 level was calculated to be 801 cm?1 in 0.5% Yb3+-doped PbClF crystals, and the corresponding population of lower laser level is about 2.13%. All the results indicated that Yb-doped PbClF crystals should be a promising material to ultrashort pulses output at 1.0 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号