首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model for the thermal conductivity of two-phase composite porous media, such as adsorbing desiccant bed with inert material, is presented. The unit cell model is extended to account for the inert materials and moisture sorbed in pores; and the effect of porosity, water content and presence of inert material is determined. The prediction of the effective thermal conductivity from this proposed model is compared with that given by other available models and experimental data and the proposed model is used to investigate the effect of porosity, water content and presence of inert material.  相似文献   

2.
3.
In order to study the influence of grain size and lattice strain on the thermal conductivity of nanocrystalline (NC) materials, both experimental and theoretical studies were carried out on NC copper. The NC copper samples were prepared by hot isostatic pressing of nano-sized powder particles with mean grain size of 30 nm. The thermal behaviors of the samples were measured to be 175.63–233.37 W (m K)?1 by using a laser method at 300 K, which is 45.6 and 60.6 % of the coarse-grained copper, respectively. The average grain size lies in the range of 56–187 nm, and the lattice strain is in the range of ?0.21 to ?0.45 % (in the direction of 111) and ?0.09 to 0.92 % (in the direction of 200). In addition, a modified Kapitza resistance model was developed to study the thermal transport in NC copper. The theoretical calculations based on the presented theoretical model were in good agreement with our experimental results, and it demonstrated that the thermal conductivity of NC materials show obvious size effect. It is also evident that the decrease in the thermal conductivity of NC material can be mainly attributed to the nano-size effect rather than the lattice strain effect.  相似文献   

4.
刘英光  张士兵  韩中合  赵豫晋 《物理学报》2016,65(10):104401-104401
用热压烧结法制备得到纳晶铜块体. 用激光法测定了不同温度下制备得到的纳晶铜块体的热导率, 并建立卡皮查热阻模型对样品热导率进行模拟. 通过对比, 模拟结果与实验数据基本一致. 随着热压烧结温度的升高, 纳晶铜晶粒尺寸也随之增大. 在900和700 ℃其热导率分别达到了最大和最小值且所对应的热导率分别为200.63和233.37 W·m-1·K-1, 各占粗晶铜块体热导率的53.4%和60.6%. 验证了纳晶铜热导率在一定的晶粒尺寸范围内具有尺寸效应, 随着晶粒尺寸的减小, 热导率逐渐减小.  相似文献   

5.
A hybrid, Al?+?Al3Ni metallic foam was synthesized in situ via laser engineered net shaping (LENS®) of Ni-coated 6061 Al powder in the absence of a foaming agent. During LENS® processing, the Ni coating reacted with the Al matrix, resulting in the simultaneous formation of a fine dispersion of Al3Ni, and a high volume fraction of porosity. As a reinforcement phase, the intermetallic compound formed particles with a size range of 1–5?µm and a volume fraction of 63%, with accompanying 35–300?µm pores with a 60% volume fraction. The microstructure of the as-deposited Al?+?Al3Ni composite foams was characterized using SEM, EDS, XRD and TEM/HRTEM techniques. The evolution of the microstructure was analyzed on the basis of the thermal field present during deposition, paying particular attention to the thermodynamics of the Al3Ni intermetallic compound formation as well as discussing the mechanisms that may be responsible for the observed porosity. The mechanical behavior of the as-deposited material was characterized using compression and microhardness testing, indicating that the yield strength and hardness are 190?MPa and 320 HV, respectively, which represents an increase of over three times higher than that of annealed Al6061, or similar to heat-treated Al6061 fully dense matrix, and much higher than those of traditional Al alloy foams, and with a low density of 1.64?g/m3.  相似文献   

6.
Porous materials with a bulk porosity of more than 68% were synthesized by powder metallurgy methods from a cobalt–nickel mixture. The effect of the ratio of nickel and cobalt powders used in the synthesis of this porous material (including cases when either nickel or cobalt alone was applied) and the conditions of their compaction on structural parameters, such as open and closed porosities and pose size, was established.  相似文献   

7.
Hydrogenated silicon film was fabricated by using plasma enhanced chemical vapor deposition method. The influence of crystalline volume fraction variation on the thermal conductivity was investigated. The relation between crystalline volume and film thickness was characterized by using spectroscopic ellipsometry with Bruggeman effective medium (BEMA) model. The thermal conductivity of silicon film was measured based on Fourier thermal transmitting law using sputtering platinum as electrode. The results demonstrate that the thermal conductivity of silicon film is proportional to the volume fraction of crystalline silicon, and there is crystalline and thermal conductive gradient between surface and bottom in the microcrystalline film.  相似文献   

8.
本文首先使用Callaway热导率模型对SiO2纳米颗粒的热导率进行了近似计算,然后耦合堆积纳米孔隙内的导热和辐射、颗粒接触热阻,基于颗粒堆积单元结构模型的一维传热分析,最终推导得到了颗粒堆积有效热导率关于颗粒直径和温度、堆积孔隙率、颗粒热导率、气相热导率、辐射传热和接触热阻的关系式,并用该式进行了相关讨论。研究结果表明,对于纳米颗粒堆积,界面接触热阻不容忽略;在低孔隙率和颗粒不参与辐射的条件下,由于受到接触热阻的影响,存在最佳孔隙率(或密度)使得堆积热导率存在最大值。  相似文献   

9.
多孔介质在工程领域中的应用非常广泛,其中有效导热率和孔隙率为多孔介质材料非常重要的性质,得到一个符合需要的有效导热率和孔隙率的多孔介质材料具有重要意义.本文使用四参数随机生成方法制作了训练数据集,搭建了一个条件生成对抗网络(CGAN),使用预定的有效导热率和孔隙率作为输入,生成一个满足输入条件的多孔介质结构.特别地,由于多孔介质的孔隙结构分布对材料的有效导热率影响巨大,提出局部结构损失函数参与网络训练,使得网络更好地学习到孔隙分布与导热率之前的关系.通过使用格子Boltzmann方法验证神经网络生成的多孔介质结构的有效导热率,结果表明该方法能够快速且准确地生成预定参数的多孔介质结构.  相似文献   

10.
The introduction of porosity into ferroelectric ceramics has been of great interest in recent years. In particular, studies of porous lead-zirconate-titanate ceramic (PZT) have been made. In the research reported, samples of Ferroperm Pz27 with porosities of 20, 25 and 30% were studied. Very complete measurements were made of all of the physical properties relevant for ferroelectric applications including thermal conductivity and diffusivity, heat capacity, dielectric, pyroelectric, piezoelectric and elastic properties. Scanning electron micrographs indicated a change from 3-0 to 3-3 connectivity with increasing porosity. Although most of the physical properties are degraded by the presence of porosity, both piezoelectric and pyroelectric figures-of-merit are improved because of the markedly reduced relative permittivity. Porous ferroelectric ceramics are very promising materials for a number of applications.  相似文献   

11.
许路加  胡明  杨海波  杨孟琳  张洁 《物理学报》2010,59(12):8794-8800
多孔硅由于具有较低的热导率,因而可以将其作为半导体器件中的绝热层.与其他从边界散射等复杂微观热传导机制出发建模研究多孔硅的热导率不同,将多孔硅热导率影响机制更表观地归结到孔洞的存在和分布等结构因素上,把整个多孔硅视为由硅连续材料介质和孔洞连续介质通过串联和并联组合成的复合微结构,给予其低热导率一个更为易于理解和简化的解释.进一步把孔隙率对等效热导率的影响分解为两个不同的部分,即纵向部分和横向部分,半定量地给出不同的孔洞结构和分布下孔隙率与等效热导率的关系.与实验数据进行对比后验证了模型的有效性.继而从结构的角度说明了多孔硅热导率较低的原因.  相似文献   

12.
蒋招绣  辛铭之  申海艇  王永刚  聂恒昌  刘雨生 《物理学报》2015,64(13):134601-134601
通过添加造孔剂的方法制备了四种不同孔隙率未极化PZT95/5铁电陶瓷. 采用非接触式的数字散斑相关性分析(digital image correltation, DIC)全场应变光学测量技术, 对多孔未极化PZT95/5 铁电陶瓷开展了单轴压缩实验研究, 讨论了孔隙率对未极化PZT95/5铁电陶瓷的力学响应与畴变、相变行为的影响. 多孔未极化PZT95/5铁电陶瓷的单轴压缩应力-应变关系呈现出类似于泡沫或蜂窝材料的三阶段变形特征, 其变形机理主要归因于畴变和相变的共同作用, 与微孔洞塌缩过程无关. 多孔未极化PZT95/5铁电陶瓷的弹性模量、压缩强度都随着孔隙率的增加而明显降低, 而孔隙率对断裂应变的影响较小. 预制的微孔洞没有改善未极化PZT95/5铁电陶瓷材料的韧性, 这是因为单轴压缩下未极化PZT95/5铁电陶瓷的断裂机理是轴向劈裂破坏, 微孔洞对劈裂裂纹传播没有起到阻碍和分叉作用. 准静态单轴压缩下多孔未极化PZT95/5铁电陶瓷畴变和相变开始的临界应力都随着孔隙率的增大而呈线性衰减, 但相变开始的临界体积应变却不依赖孔隙率.  相似文献   

13.
基于微拉曼光谱技术的氧化介孔硅热导率研究   总被引:1,自引:0,他引:1       下载免费PDF全文
房振乾  胡明  张伟  张绪瑞 《物理学报》2008,57(1):103-110
利用基于有效介质理论的介孔硅传热机理,提出一个用于分析氧化介孔硅热导率的理论模型,对影响氧化介孔硅有效热导率的因素进行了理论分析,得出用于计算氧化介孔硅有效热导率的计算公式. 采用双槽电化学腐蚀法制备介孔硅,利用微拉曼光谱技术研究了氧化介孔硅热导率随所制备介孔硅孔隙率的变化规律,比较了经不同温度处理的氧化介孔硅的导热性能差异. 孔隙率为60%,73.4%和78.8%的所制备介孔硅经300℃氧化处理后,其热导率值为8.625W/(m·K),3.846W/(m·K)和1.817W/(m·K);孔隙率为73.4 关键词: 理论模型 氧化介孔硅 微拉曼光谱 有效热导率  相似文献   

14.
The aim of this review article is to consolidate the important research works dedicated to polymers which are mainly used target material for heat transfer applications. The requirement of present day heat transfer equipment is compactness, lightweight, manufacturability, and lower cost. Materials like copper and aluminum though have better thermal conductivity but they are expensive and also heavy. Polymers are cheaper and easy to manufacture, recycle though they have sufficiently lower thermal conductivity compared to copper and aluminum. Polymer materials are thermally insulating material. It is too difficult to improve the amorphous nature of polymer material in order to achieve high thermal conductivity. One key path to increase the thermal conductivity of a polymer is to reinforce high thermal conductive fillers in the host matrix. In this review paper, an attempt is made to explore and summarize various key paths suggested by the researchers to develop high thermal conductive polymer composites.  相似文献   

15.
CoSb3纳米热电材料的制备及热传输特性   总被引:6,自引:0,他引:6       下载免费PDF全文
余柏林  唐新峰  祁琼  张清杰 《物理学报》2004,53(9):3130-3135
以Sb,Co为起始原料,采用固相反应法合成了CoSb3.通过高能球磨制得CoSb3纳米粉末,用放电等离子烧结(SPS)方法制备出最小平均晶粒尺寸为150nm的块体材料.研究了晶粒尺寸与热传输性能之间的关系:CoSb3化合物结构纳米化对其晶格热导率κL有显著影响,当晶粒尺寸由微米尺度减小到纳米尺度,晶格热导率κL显著降低,但对载流子热导率κc的影响不甚显著.CoSb3化合物的热导率κ随晶粒尺寸的减小而降 低主要是由于晶格热导率κL随晶粒尺寸的减小而降低所致. 关键词: 纳米 Skutterudite 制备 热传输特性  相似文献   

16.
黄丛亮  冯妍卉  张欣欣  王戈  李静 《物理学报》2011,60(11):114401-114401
文章根据二氧化硅介孔材料MCM-41纳米孔结构特点,首先建立和验证了纳米结构单元模型,然后使用平衡分子动力学方法模拟了孔壁热导率;接着耦合孔隙内气体导热,开展了一维传热分析,最终提炼出MCM-41的有效热导率表达式;并对壁厚、孔径和孔隙率对热导率的影响进行了分析.研究结果表明,MCM-41具有良好的绝热性能,其有效热导率随孔隙率增大近似呈线性减小,且表现出各向异性;导热性能沿孔道长度方向表现出准一维特性. 关键词: 有效热导率 介孔材料 MCM-41 平衡分子动力学  相似文献   

17.
Effects of ultrasound on polymeric foam porosity   总被引:1,自引:0,他引:1  
A variety of materials require functionally graded cellular microstructures whose porosity is engineered to meet specific applications (e.g. mimic bone structure for orthopaedic applications; fulfil mechanical, thermal or acoustic constraints in structural foamed components, etc.). Although a huge variety of foams can be manufactured with homogenous porosity, there are no generic processes for controlling the distribution of porosity within the resulting matrix. Motivated by the desire to create a flexible process for engineering heterogeneous foams, the authors have investigated how ultrasound, applied during the formation of a polyurethane foam, affects its cellular structure. The experimental results demonstrated how the parameters of ultrasound exposure (i.e. frequency and applied power) influenced the volume and distribution of pores within the final polyurethane matrix: the data demonstrates that porosity (i.e. volume fraction) varies in direct proportion to both the acoustic pressure and frequency of the ultrasound signal. The effects of ultrasound on porosity demonstrated by this work offer the prospect of a manufacturing process that can adjust the cellular geometry of foam and hence ensure that the resulting characteristics match the functional requirements.  相似文献   

18.
《Solid State Ionics》2006,177(37-38):3245-3249
Unusual ionic transport in tetrabutylammonium iodide (C4H9)4NI (TBAI) was observed by high resolution proton NMR spectroscopy accompanied by diffusion experiments. Some parts of the TBA cations are diffusing not only in the plastic phase II, but in the low temperature ordered phase I as well. The diffusing TBA ions are considered to be inside the remaining plastic domains dispersed in the ordered crystal matrix. The volume fraction of the plastic domain is evaluated from the observed narrow component of the proton NMR spectra. The observed unusual temperature dependence of the diffusion coefficient can be explained by assuming a manifold decrease of the dimension of the plastic domain in phase I. The differences in degree of crystallinity at the interface of plastic domains with respect to its surroundings led to the surface enhancement of diffusivity in phase I. Finally, the observed ionic conductivity is compared with the estimation from the diffusion coefficient and mobile cation densities. The results suggest that only a fraction of the cations take part in the observed ionic conductivity.  相似文献   

19.
四丁基溴化铵(TBAB)水合物浆体在常压下的相变温度介于0-12℃之间,作为蓄冷材料使用时由于相变过程的存在使得其蓄冷能力较高,而且在管道中具有良好的流动特性,因而是一种理想的蓄冷和冷量输送材料。对比分析了传统导热系数计算公式和基于一维非稳态导热模型导出的导热系数计算公式的区别。利用热线装置分别测量了TBAB溶液和水合物浆体的导热系数。实验得出5-30 wt%TBAB溶液的导热系数在0.4-0.6 W.m-1.K-1之间,并随浓度的增加而减小;10-40vol%的水合物浆体的导热系数在0.5-0.6 W.m-1.K-1之间,并随体积分数的增加而增大;相同体积浓度时A型水合物浆体的导热系数大于B型水合物浆体的导热系数。  相似文献   

20.
The ferroelectric specimen is considered as an aggregation of many randomly oriented domains. According to this mechanism, a multi-domain mechanical model is developed in this paper. Each domain is represented by one element. The applied stress and electric field are taken to be the stress and electric field in the formula of the driving force of domain switching for each element in the specimen. It means that the macroscopic switching criterion is used for calculating the volume fraction of domain switching for each element. By using the hardening relation between the driving force of domain switching and the volume fraction of domain switching calibrated, the volume fraction of domain switching for each element is calculated. Substituting the stress and electric field and the volume fraction of domain switching into the constitutive equation of ferroelectric material, one can easily get the strain and electric displacement for each element. The macroscopic behavior of the ferroelectric specimen is then directly calculated by volume averaging. Meanwhile, the nonlinear finite element analysis for the ferroelectric specimen is carried out. In the finite element simulation, the volume fraction of domain switching for each element is calculated by using the same method mentioned above. The interaction between different elements is taken into account in the finite element simulation and the local stress and electric field for each element is obtained. The macroscopic behavior of the specimen is then calculated by volume averaging. The computation results involve the electric butterfly shaped curves of axial strain versus the axial electric field and the hysteresis loops of electric displacement versus the electric field for ferroelectric specimens under the uniaxial coupled stress and electric field loading. The present theoretical prediction agrees reasonably with the experimental results. Supported by the National Natural Science Foundation of China (Grant No. 10572138)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号