首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对一阶区间摄动有限元法在声场参数不确定程度增大时误差过大的缺陷,在二阶Taylor展开的基础上推导了声学二阶区间摄动有限元法,并将其应用于区间不确定声场的声压响应分析。该方法先对声学区间有限元方程的声压响应向量进行二阶Taylor展开,获取声压响应的二阶近似响应向量;再根据二次函数极值定理获得声压响应向量的上下界。二维管道声场与轿车声腔模型的数值分析算例表明,与一阶区间摄动有限元法相比,二阶区间摄动有限元法有效提高了计算精度。因此二阶区间摄动有限元适合不确定度更大的区间不确定声场声压响应分析,具有良好的工程应用前景。   相似文献   

2.
Based on the finite element framework and uncertainty analysis theory, this paper proposes a first-order subinterval perturbation finite element method (FSPFEM) and a modified subinterval perturbation finite element method (MSPFEM) to solve the uncertain structural–acoustic problem with large fuzzy and interval parameters. Fuzzy variables are used to represent the subjective uncertainties associated with the expert opinions; whereas, interval variables are adopted to quantify the objective uncertainties with limited information. By using the level-cut strategy and subinterval methodology, the original large fuzzy and interval parameters are decomposed into several subintervals with small uncertainty level. In both FSPFEM and MSPFEM, the subinterval matrix and vector are expanded by the Taylor series. The inversion of subinterval matrix in FSPFEM is approximated by the first-order Neumann series, while the modified Neumann series with higher order terms is adopted in MSPFEM. The eventual fuzzy interval frequency responses are reconstructed by the interval union operation and fuzzy decomposition theorem. A numerical example evidences the remarkable accuracy and effectiveness of the proposed methods to solve engineering structural–acoustic problems with hybrid uncertain parameters.  相似文献   

3.
Aiming at the problem that the epistemic uncertain parameters exist in an acoustic field,an evidence theory-based finite element method(ETFEM) is proposed by introducing the evidence theory,in which the focal element and basic probability assignment(BPA) are used to describe the epistemic uncertainty.In order to reduce the computational cost,the interval analysis technique based on perturbation method is adopted to acquire the approximate sound pressure response bounds for each focal element.The corresponding formulations of intervals of expectation and standard deviation of the sound pressure response with epistemic uncertainty are deduced.The sound pressure response of a 2D acoustic tube and a 2D car acoustic cavity with epistemic uncertain parameters are analyzed by the proposed method.The proposed method is verified through the comparison of the analysis results of random acoustic field with that of epistemic uncertain acoustic field.Numerical analysis results show that the proposed method can analyze the 2D acoustic field with epistemic uncertainty effectively,and has good prospect of engineering application.  相似文献   

4.
针对声学参数存在认知不确定性的问题,为实现认知不确定声场声压响应的预测。提出了解决二维认知不确定声场的有限元法(Evidence Theory-based Finite Element Method,ETFEM),引入证据理论,采用焦元和基本可信度的概念来描述认知不确定参数,基于摄动法的区间分析技术,推导了认知不确定声场声压响应的标准差、期望求解公式。为验证本文方法的可行性。以认知不确定参数下的二维管道声场模型和某轿车二维声腔模型为例进行了数值计算,对比离散随机变量得到认知不确定参数的声场分析结果和相应的随机声场所得分析结果,研究表明:该方法能够有效的处理认知不确定参数下的二维声场,为工程问题中噪声预测提供可靠的分析模型。   相似文献   

5.
Regard for the fuzziness and the randomness in some acoustic fields,a method for the numerical analysis of the 2D acoustic field with Fuzzy-Random parameters was proposed based on the equivalent conversion of information entropy.In the proposed method,a fuzzyrandom acoustic field was treated as a pure fuzzy acoustic field or a pure random acoustic field by transforming all the variables into fuzzy variables or random variables.Perturbation finite element methods for analyzing the two-dimensional acoustic fuzzy and random field are deduced.The sound pressure response of a 2D acoustic tube and the 2D acoustic cavity of a car with fuzzy-random parameters were analyzed by the proposed method and the Monte Carlo method,the results show that the proposed method can be well applied to the numerical analysis of the 2D acoustic field with fuzzy-random parameters,and has good prospect of engineering application.  相似文献   

6.
解决声场参数同时具有模糊性和随机性的问题,实现模糊随机声场声压响应的预测,引入了信息熵理论,利用信息熵的等效转换,将模糊随机声场转化为纯随机声场或者纯模糊声场进行求解,推导了基于摄动法的二维随机声场和模糊声场的有限元计算公式。以模糊随机参数下的二维管道声场模型和某轿车二维声腔模型为例进行了数值计算,所得结果与蒙特卡洛法(Monte Carlo Method)所预测声压变化范围基本一致,同时,转化为纯随机声场和纯模糊声场所求得声压响应变化范围也基本一致,说明了本文方法计算结果的准确性。因此本文方法能很好地应用于模糊随机参数下二维声场的预测,具有重要的工程应用价值。   相似文献   

7.
An analytical study on the vibro-acoustic behaviors of a double-panel structure with an acoustic cavity is presented. Unlike the existing studies, a structural–acoustic coupling model of an elastically restrained double-panel structure with an acoustic cavity having arbitrary impedance on sidewalls around the cavity is developed in which the two dimensional (2D) and three dimensional (3D) modified Fourier series are used to represent the displacement of the panels and the sound pressure inside the cavity, respectively. The unknown expansions coefficients are treated as the generalized coordinates and the Rayleigh–Ritz method is employed to determine displacement and sound pressure solutions based on the energy expressions for the coupled structural–acoustic system. The effectiveness and accuracy of the present model is validated by numerical example and comparison with finite element method (FEM) and existing analytical method, with good agreement achieved. The influence of key parameters on the vibro-acoustic behaviors and sound transmission of the double-panel structure is investigated, including: cavity thickness, boundary conditions, sidewall impedance, and the acoustic medium in the cavity.  相似文献   

8.
朱文卿  陈宁  刘坚  于德介 《声学学报》2021,46(3):344-354
针对含概率盒-证据混合认知不确定参数声场的响应预测问题,提出了一种概率盒框架下的改进区间蒙特卡洛方法。该方法首先将混合认知不确定参数转换为纯概率盒形式,然后结合有限元方法推导出混合认知不确定声场的盖根鲍尔多项式代理模型,再采用蒙特卡洛方法求解代理模型得到声压响应。以含概率盒-证据混合认知不确定参数的二维管道声场模型和卡车乘客舱声腔模型为例,计算结果表明混合认知不确定参数影响下的声压响应为概率盒形式,其包括声压响应极值和相应的概率信息,并且所提方法较常规混合离散方法效率更优,较基于一阶摄动法的区间蒙特卡洛方法准确性更高。研究结果表明:所提方法可以有效预测混合认知不确定声场的声压响应,并可进行声学性能的风险和保守估计。   相似文献   

9.
声表面波在厚金属栅阵中的耦合模参数   总被引:2,自引:0,他引:2  
徐方迁  金步平 《声学学报》2010,35(4):441-445
提出了一种研究声表面波在压电晶体厚金属栅阵中传播特性的理论方法。将有限元和声表面波在周期栅阵中的变分原理分析方法相结合,在陈东培和H.A.Haus理论基础上、用有限元分析金属短路栅对声表面波传输特性的影响,将力学负载贡献的耦合模参数用有限元矩阵表示,使其适用于声表面波在厚金属或任意形状栅条中传输情况,给出了具体理论分析方法和相应的理论表达式。最后,具体研究了几种压电晶体上金、铝或银栅阵中声表面波的传输特性,通过数值计算给出了声表面波的耦合模参数。   相似文献   

10.
针对声学有限元分析中四节点等参单元计算精度低,对网格质量敏感的问题,将光滑有限元法引入到多流体域耦合声场的数值分析中,提出了二维多流体域耦合声场的光滑有限元解法。该方法在Helmholtz控制方程与多流体域耦合界面的声压/质点法向速度连续条件的基础上,得到二维多流体耦合声场的离散控制方程,并采用光滑有限元的分区光滑技术将声学梯度矩阵形函数导数的域内积分转换形函数的域边界积分,避免了雅克比矩阵的计算。以管道二维多流体域耦合内声场为数值分析算例,研究结果表明,与标准有限元相比,对单元尺寸较大或扭曲严重的四边形网格模型,光滑有限元的计算精度更高。因此光滑有限元能很好地应用于大尺寸单元或扭曲严重的网格模型下二维多流体域耦合声场的预测,具有良好的工程应用前景。   相似文献   

11.
We incorporated a cell-wise acoustic pressure gradient smoothing operation into the standard compatible finite element method and extended the smoothed finite element method (SFEM) for 2D acoustic problems. This enhancement was especially useful for dealing with the problem of an arbitrary shape with violent distortion elements. In this method, the domain integrals that involve shape function gradients can be converted into boundary integrals that involve only shape functions. Restrictions on the shape elements can be removed, and the problem domain can be discretized in more flexible ways. Numerical results showed that the proposed method achieved more accurate results and higher convergence rates than the corresponding finite element methods, even for violently distorted meshes. The most promising feature of SFEM is its insensitivity to mesh distortion. The superiority of the method is remarkable, especially when solving problems that have high wave numbers. Hence, SFEM can be beneficially applied in solving two-dimensional acoustic problems with severely distorted elements, which, in practice, have more foreground than regularity mesh.  相似文献   

12.
曹娜  陈时  曹辉  王成会  刘航 《物理学报》2020,(3):163-169
提出了一种新的求解非线性波动方程的数值迭代法,它是一种半解析的方法.与完全的数值计算方法扰法相比,它能够考虑各阶谐波的相互作用,且能够满足能量守恒定律.用它研究了非线性声波在液体中的传播性质,结果表明,在微扰法适用的声强范围内迭代法也适用,在微扰法不适用的一个较宽的声强范围内迭代法依然适用.  相似文献   

13.
This paper describes a new three-dimensional (3D) analysis of tonal noise radiated from non-axisymmetric turbofan inlets. The novelty of the method is in combining a standard finite element discretisation of the acoustic field in the axial and radial coordinates with a Fourier spectral representation in the circumferential direction. The boundary conditions at the farfield, fan face and acoustic liners are treated using the same spectral representation. The resulting set of discrete acoustic equations are solved employing the well-established BICGSTAB or QMR iterative algorithms and a very effective specialised preconditioner based on the axisymmetric mean geometry and flow field. Numerical examples demonstrate the suitability of the new method to engine configurations with realistic 3D features, such as relatively large degrees of asymmetry and spliced acoustic liners. The examples also illustrate the two advantages of the new method over a traditional 3D finite element approach. The new method requires a significantly smaller number of unknowns as relatively few circumferential Fourier modes in the spectral solution ensure an accurate field representation. Also, due to the effective preconditioner, the spectral linear solver benefits from stable iterations at a high rate of convergence.  相似文献   

14.
15.
In order to investigate the propagation characteristics of linear and non-linear ion acoustic waves (IAWs) in electron–positron–ion quantum plasma in the presence of external weak magnetic field, we have used a quantum hydrodynamic model, and degenerate statistics for the electrons and positrons are taken into account. It is found that the linear dispersion relation of the IAW was modified by the externally applied magnetic field. By using the reductive perturbation technique, a gyration-modified Korteweg-de Vries equation is derived for finite amplitude non-linear IAWs. Time-dependent numerical simulation shows the formation of an oscillating tail in front of the ion acoustic solitons in the presence of a weak magnetic field. It is also seen that the amplitude and width of solitons and oscillating tails are affected by the relevant plasma parameters such as quantum diffraction, positron concentration, and magnetic field. We have performed our analysis by extending it to account for approximate soliton solution by asymptotic perturbation technique and non-linear analysis via a dynamical system approach. The analytical results show the distortion of the shape of the localized soliton with time, and the non-linear analysis confirms the generation of oscillating tails.  相似文献   

16.
A perturbation technique is used to reduce the eighth-order vibration problem for prestressed, clamped cylindrical shells to an equivalent sixth-order membrane problem. In the transformation to a membrane problem composite expansions are utilized, uniformly valid over the length of the shell, to formulate modified boundary conditions that account for the effects of bending near the shell ends. By solving the simpler modified membrane problem numerically, one can demonstrate the effectiveness of the method against eighth-order bending solutions. Indeed, the distinguishing characteristics of the proposed technique is the manner in which perturbation theory and numerical analysis methods complement one another as, for example, in the case of the finite element method, where under certain conditions a modification of the simple membrane element would extend the inherent numerical efficiency of the element to the solution of a class of problems involving both membrane and bending actions.  相似文献   

17.
The present work details the Elastoplast (this name is a translation from the French “sparadrap”, a concept first applied by Yves Morchoisne for Spectral methods [1]) Discontinuous Galerkin (EDG) method to solve the compressible Navier–Stokes equations. This method was first presented in 2009 at the ICOSAHOM congress with some Cartesian grid applications. We focus here on unstructured grid applications for which the EDG method seems very attractive. As in the Recovery method presented by van Leer and Nomura in 2005 for diffusion, jumps across element boundaries are locally eliminated by recovering the solution on an overlapping cell. In the case of Recovery, this cell is the union of the two neighboring cells and the Galerkin basis is twice as large as the basis used for one element. In our proposed method the solution is rebuilt through an L2 projection of the discontinuous interface solution on a small rectangular overlapping interface element, named Elastoplast, with an orthogonal basis of the same order as the one in the neighboring cells. Comparisons on 1D and 2D scalar diffusion problems in terms of accuracy and stability with other viscous DG schemes are first given. Then, 2D results on acoustic problems, vortex problems and boundary layer problems both on Cartesian or unstructured triangular grids illustrate stability, precision and versatility of this method.  相似文献   

18.
Two-dimensional (2D) metal–organic framework (MOF) nanosheets have recently received extensive attention due to their ultra-thin thickness, large specific surface area, chemical and functional designability. In this study, an unconventional method using surface acoustic wave (SAW) technology is proposed to exfoliate large quantities and uniform layers of 2D MOF-Zn2(bim)4 nanosheets in a microfluidic system. We successfully demonstrated that the thickness of 2D MOF is effectively and accurately controlled by optimizing the SAW parameters. The mechanisms for the efficient exfoliation of 2D MOF nanosheets is attributed to both the electric and acoustic fields generated by the SAWs in the liquid. The electric field ionizes the methanol to produce H+ ions, which intercalate Zn2(bim)4 sheets and weaken the interlayer bonding, and the strong shear force generated by SAWs separates the MOF sheets. A yield of 66% for monolayer MOFs with a maximum size of 3.5 μm is achieved under the combined effect of electric and acoustic fields. This fast, low-energy exfoliation platform has the potential to provide a simple and scalable microfluidic exfoliation method for production of large-area and quantities of 2D MOFs.  相似文献   

19.
The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.  相似文献   

20.
This second paper in a two part series describes the implementation of the finite element method for the solution of the problem of acoustic transmission through a non-uniform duct carrying a high speed subsonic compressible flow. A finite element scheme based on both the Galerkin method and the residual least squares method and with eight noded isoparametric elements is described. Multi-modal propagation is investigated by coupling of the solution in the duct non-uniform section to modal expansions in uniform sections. The accuracy of the finite element results for both the eigenvalue and transmission problems is assessed by comparison with exact solutions and with results from the method of weighted residuals in the form of a modified Galerkin method as introduced in Part I of this pair of papers. The results of calculations show that modal interactions, particularly in transmitted modes, become increasingly important with increasing duct flow Mach number. Power transmission coefficient calculations for the geometries studied reveal no indication of a linear basis for the phenomenon of subsonic acoustic choking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号