首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow mesoporous silica nanoparticles (HMSNs) with the diameter in range of 100–500 nm and the wall thickness of about 50 nm were synthesized by templates of cetyltrimethylammonium bromide under the assistant of microfluidization technique. These HMSNs were demonstrated effective drug loading and a pH-responsive drug release.  相似文献   

2.
Bimodal mesoporous silica material composed of 30-40 nm sized nanoparticles with 3.5 nm sized three-dimensionally interconnected mesopores was synthesized under neutral conditions using sodium silicate as a silica source. Using the bimodal mesoporous silica as a template, bimodal mesoporous carbon having 4 nm sized framework mesopores and approximately 30 nm sized textural pores was synthesized.  相似文献   

3.
Liquid surface curvature variations in microplate wells due to different liquid surface tension cause significant signal change in spectroscopic measurement using a plate reader with a vertical detecting light beam. The signals have been quantitated and used to develop a method for facile surfactant critical micelle concentration determination.  相似文献   

4.
The grain size and regularity of the hexagonal array of mesoporous silica nanoparticles were investigated in a binary surfactant system composed of cetyltrimethylammonium chloride and triblock copolymer EO106PO60EO106. Structural control was achieved by varying the parameters for the prior hydrolysis of silicon alkoxide under an acidic condition and the subsequent assembly of silicates and surfactants under a basic condition. The formation of the mesoscale architectures was based on the balance between the ordered assembly of anionic silicates and the cationic surfactant through electrostatic interaction and the inhibition of grain growth with a nonionic amphiphilic agent through hydrogen bonds.  相似文献   

5.
The development of a practical synthetic method to functionalize hollow mesoporous silica with organic groups is of current intere st for selective adsorption and ene rgy storage applications.Herein,a facile and controllable one-pot approach for the synthesis of monodisperse amino-functionalized hollow mesoporous silica nanoparticles is presented.A novel solid-to-hollow structural transformation procedure of the silica nanoparticles is presented.The structural transformation is easily designed,as obse rved through transmission electro n microscopy,by tailo ring the HCl and N-lauroylsarcosine sodium molar ratio and the water content in the sol-gel.Ordered and radially oriented in situ aminofunctionalized mesochannels were successfully introduced into the shells of the hollow silica nanoparticles.A formation mechanism for the hollow mesoporous silica materials is discussed.  相似文献   

6.
A mixed surfactant approach has been successfully employed in an aerosol-based synthesis of spherical silica particles exhibiting a new core-shell structure where the shell and the core exhibit different ordered mesoporosity and pore sizes.  相似文献   

7.
We studied the formation mechanism of hierarchical mesoporous silica nanoparticles with a wrinkle structure (wrinkled silica nanoparticles, WSNs), and a method for substructure control of silica nanoparticles was proposed. We confirmed that WSNs were generated in the bicontinuous microemulsion phase of the Winsor III system. By using the phase behavior of the Winsor III system, which depends on the water-surfactant-oil mixing ratio, and by adding various cosolvents, we could precisely control the structure of silica nanoparticles from the mesoporous to the wrinkle form; furthermore, we could control the interwrinkle distance.  相似文献   

8.
Various mesoporous silica solids were prepared by using poly(ethylene oxide)-based surfactants as templates in a neutral, fluoride, or moderately acidic medium, and their properties examined by different physical techniques. Precipitation in an acid or neutral medium provided materials of pore size in between those of micropores and mesopores irrespective of the molecular size of the surfactant. On the other hand, syntheses in a fluoride-containing medium yielded mesoporous materials with pore diameters over the range 36-84 A that increased with increasing surfactant size. All materials possessed specific surface areas above 650 m(2)g(-1) and high pore volumes-particularly those obtained in a fluorinated medium. The conditions used in the syntheses and the fact that all produced highly disordered porous materials suggest that their mechanism of formation is essentially of the N(0)I(0) neutral type. The materials obtained in the presence of fluoride ion, which promote the condensation of siliceous species, retain greater amounts of surfactant and exhibit increased cross-linking and decreased particle sizes, which results in textural mesoporosity.  相似文献   

9.
Evanescent wave-cavity ring-down spectroscopy (EW-CRDS) is employed to characterize micellization of anionic surfactants and the related capability of removing cationic substance off the silica surface. Crystal violet (CV(+)) cationic dye is used as a molecular probe to effectively determine critical hemimicelle concentration (HMC) of surfactants on the surface. The HMC results are 1×10(-2), 4×10(-3), 8×10(-4), and 2.5×10(-4) mol/L for sodium sulfate salts with a carbon-chain length of C-10, C-12, C-14, and C-16, respectively. A stronger hydrophobic interaction results in a less concentration required to undergo micellization. The HMC values on the surface are about half of those in solution. When NaCl solution is added, the electrolyte helps reduce the electrostatic repulsion between the anionic sulfate heads to facilitate the surfactant aggregation, and thus, the subsequent HMC is reduced. Furthermore, the probable phase change for dye-surfactant interactions on the surface at the concentration below HMC is observed, and the desorption rates of CV(+) are measured as a function of concentration and carbon-chain length of surfactants above HMC. Given each surfactant concentration at its respective HMC, the corresponding desorption rates are along the order of C-12相似文献   

10.
11.
We have synthesized a series of catalysts for epoxidation of styrene by immobilizing salicylaldimine transition metal (copper, manganese, and cobalt) complexes on mesoporous silica nanoparticles (MSNs) with diameters of 120-150 nm. The prepared catalysts are characterized by infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP), CHN elemental analysis, nitrogen adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). These catalysts possess excellent catalytic efficiency in epoxidation of styrene when using tert-BuOOH (TBHP) as oxidant. Styrene shows a high conversion (~99%) as well as epoxide selectivity (~80%) over Cu-MSN catalysts, and high conversion (~99%) and moderate epoxide selectivity (~65%) over Mn-MSN and Co-MSN catalysts. The recycling experiment results indicate that these catalysts maintain catalytic activity even after being used for three cycles. Our results indicate that MSNs can serve as better catalyst supports.  相似文献   

12.
A novel, fast and facile microwave technique has been developed for preparing monodispersed silica coated silver (Ag@SiO(2)) nanoparticles. Without using any other surface coupling agents such as 3-aminopropyltrimethoxysilane (APS) or polymer such as polyvinyl pyrrolidone (PVP), Ag@SiO(2) nanoparticles could be easily prepared by microwave irradiation of a mixture of colloidal silver nanoparticles, tetraethoxysilane (TEOS) and catalyst for only 2 min. The thickness of silica shell could be conveniently controlled in the range of few nanometers (nm) to 80 nm by changing the concentration of TEOS. Transmission electron microscopy (TEM) and UV-visible spectroscopy were employed to characterize the morphology and optical properties of the prepared Ag@SiO(2) nanoparticles, respectively. The prepared Ag@SiO(2) nanoparticles exhibited a change in surface plasmon absorption depending on the silica thickness. Compared to the conventional techniques based on St?ber method, which need 4-24 h for silica coating of Ag nanoparticles, this new technique is capable of synthesizing monodispersed, uniform and single core containing Ag@SiO(2) nanoparticles within very short reaction time. In addition, straightforward surface functionalization of the prepared Ag@SiO(2) nanoparticles with desired functional groups was performed to make the particles useful for many applications. The components of surface functionalized nanoparticles were examined by Fourier transform infrared (FT-IR) spectroscopy, zeta potential measurements and X-ray photoelectron spectroscopy (XPS).  相似文献   

13.
Highly ordered hexagonal mesoporous silica materials (JLU-20) with uniform pore sizes have been successfully synthesized at high temperature (150-220 degrees C) by using fluorocarbon-hydrocarbon surfactant mixtures. The fluorocarbon-hydrocarbon surfactant mixtures combine the advantages of both stable fluorocarbon surfactants and ordered hydrocarbon surfactants, giving ordered and stable mixed micelles at high temperature (150-220 degrees C). Mesoporous JLU-20 shows extraordinary stability towards hydrothermal treatment (100 % steam at 800 degrees C for 2 h or boiling water for 80 h), thermal treatment (calcination at 1000 degrees C for 4 h), and toward mechanical treatment (compressed at 740 MPa). Transmission electron microscopy images of JLU-20 show well-ordered hexagonal arrays of mesopores with one-dimensional (1D) channels and further confirm that JLU-20 has a two-dimensional (2D) hexagonal (P6 mm) mesostructure. 29Si HR MAS NMR spectra of as-synthesized JLU-20 shows that JLU-20 is primarily made up of fully condensed Q4 silica units (delta=-112 ppm) with a small contribution from incompletely cross-linked Q3 (delta=-102 ppm) as deduced from the very high Q4/Q3 ratio of 6.5, indicating that the mesoporous walls of JLU-20 are fully condensed. Such unique structural features should be directly attributed to the high-temperature synthesis, which is responsible for the observed high thermal, hydrothermal, and mechanical stability of the mesoporous silica materials with well-ordered hexagonal symmetry. Furthermore, the concept of "high-temperature synthesis" is successfully extended to the preparation of three-dimensional (3D) cubic mesoporous silica materials by the assistance of a fluorocarbon surfactant as a co-template. The obtained material, designated JLU-21, has a well-ordered cubic Im3m mesostructure with fully condensed pore walls and shows unusually high hydrothermal stability, as compared with conventional cubic mesoporous silica materials such as SBA-16.  相似文献   

14.
Here we report a novel hard-templating strategy for the synthesis of mesoporous monocrystalline Pt nanoparticles (NPs) with uniform shapes and sizes. Mesoporous Pt NPs were successfully prepared through controlled chemical reduction using ascorbic acid by employing 3D bicontinuous mesoporous silica (KIT-6) and 2D mesoporous silica (SBA-15) as a hard template. The particle size could be controlled by changing the reduction time. Interestingly, the Pt replicas prepared from KIT-6 showed polyhedral morphology. The single crystallinity of the Pt fcc structure coherently extended over the whole particle.  相似文献   

15.
Mesoporous silica nanoparticles (MSNPs) have garnered a great deal of attention as potential carriers for therapeutic payloads. However, achieving triggered drug release from MSNPs in vivo has been challenging. Here, we describe the synthesis of stimulus-responsive polymer-coated MSNPs and the loading of therapeutics into both the core and shell domains. We characterize MSNP drug-eluting properties in vitro and demonstrate that the polymer-coated MSNPs release doxorubicin in response to proteases present at a tumor site in vivo, resulting in cellular apoptosis. These results demonstrate the utility of polymer-coated nanoparticles in specifically delivering an antitumor payload.  相似文献   

16.
Water-in-oil reverse micelles of butyl ammonium laurate in hexanes that contain sodium hexachlororhodate were reduced with sodium borohydride to yield rhodium nanoparticles. The size of the micelle, determined by dynamic light scattering, was from 3 to 20 nm and varied as the water to surfactant ratio (W) was changed. The rhodium nanoparticles exhibited a Gaussian size distribution (sigma=0.35 nm), with average diameters of 1.5, 2.2, and 2.9 nm. The products were characterized with TEM, HRTEM, and X-ray photoemission spectroscopy.  相似文献   

17.
18.
We report the use of the block copolymer micelle approach to produce various transition metal nanoparticles such as iron, cobalt, and nickel with precisely controlled size and spacing. These uniformly sized catalyst nanoparticles derived from the block copolymer micelle approach have enabled the synthesis of carbon nanotubes (CNTs) with narrow size distribution. Because of the excellent film forming ability of the polymeric material, metal-bearing surface micelles produced from the solution micelles can be distributed uniformly on a surface, resulting in evenly dispersed catalyst nanoparticles. As a result, high quality and uniformly distributed CNTs have been synthesized. Spatially selective growth of CNTs from a lithographically patterned metal-bearing micelle film has been achieved. The polymer template approach can potentially be extended to synthesize single-metallic and bimetallic catalytically active nanoparticles with uniform size and spacing and is fully compatible with conventional lithographic process. Additionally, catalyst nanoparticles produced from this method do not coalesce at high growth temperature. All these attributes make this approach a promising fabrication pathway for controllable synthesis of CNTs.  相似文献   

19.
The study focuses on the synthesis of mesoporous silica materials using liquid crystals (LCs) formed in an aqueous mixture of cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) as templates and tetrathoxysilane (TEOS) as precursor. For this purpose, the phase behavior and range of LC areas were determined at different temperatures, concentrations, and ratios of CTAB/SDS. It was found that LCs became denser with the increased of concentration of surfactants. The mesoporous materials were synthesized using LCs as templates at various temperatures, surfactant concentrations, and pH values. The mesoporous samples were characterized using SEM and nitrogen sorption analysis. The research results showed that the structure of synthesized samples were lamellar and their surface areas increased significantly with the increase of temperature in the temperature range of LCs, reaching about 900?m2/g at 60°C. The surfactant concentrations affect the thickness of pore wall and thereby the specific surface area of products. The specific surface area and the order of mesoporous sample increased gradually with the decrease of pH.  相似文献   

20.
Early electrosynthesized polythiophene nanowires were prepared employing a mesoporous silica template, which was also electrochemically produced. A cathodic potential step was applied to a fluorine doped tin oxide conducting glass electrode in a cationic surfactant and silicate reagent medium to deposit highly ordered mesoporous silica films. To evaluate the pores order and, consequently, optimal deposition potential, the electrochemical response of the electrodes was studied using ferrocene as redox probe. The modified electrodes were used to accomplish polythiophene electrodeposits employing 0.6 mM thiophene and 0.1 M tetrabutylammonium hexafluorophosphate in anhydrous CH3CN as working solution. Transmission electron microscope images of the deposits revealed the presence of polythiophene nanowires of about 6 nm in diameter arranged normal to the electrode surface. The unprecedented small size and arrangement of the obtained nanowires place this work as the first study that successfully accomplished the formation of nanoscale electrochemically synthesized conducting polymer nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号