首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of B2O3 on the microstructure and microwave dielectric properties of the 0.4Nd(Mg0.4Zn0.1Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system were investigated with a view to their use in microwave devices. A B2O3-doped 0.4Nd(Mg0.4Zn0.1Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system was prepared by the conventional solid-state method. The X-ray diffraction patterns of the B2O3-doped 0.4Nd(Mg0.4Zn0.1Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system did not significantly vary with sintering temperature. A 0.5 wt% B2O3-doped 0.4Nd(Mg0.4Zn0.1Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system that was sintered at 1350 °C for 4 h had a dielectric constant of 38.3, a quality factor Qf of 35,000 GHz, and a temperature coefficient of resonant frequency of ?4.8 ppm/°C.  相似文献   

2.
Lead magnesium niobate, Pb(Mg1/3Nb2/3)O3 (PMN) ceramics were prepared from the columbite method using calcined powders of various milling time (24–96 h). The effects on the grain size and dielectric properties of the ceramics were investigated. The results show that dielectric properties of ceramics are strongly influenced by the milling time of the starting precursors. Higher percentage of perovskite phase was found in the ceramics that was milled longer and thus the dielectric constant was found to increase when compared to the conventional 24 h milled results. Moreover, milling time also affected the particle size of the starting precursors and that of PMN powders. Therefore, milling time did not only affect the particle size of PMN powders but also the resultant grain size and the formation of perovskite phase, consequently affecting the dielectric constant of the ceramics.  相似文献   

3.
Cobalt ferrite nanoparticles having the chemical formula CoFe2−2xZrxZnxO4 with x ranging from 0.0 to 0.4 were prepared by chemical co-precipitation method. The powder X-ray diffraction pattern confirms the spinel structure for the prepared compound. The particle size was calculated from the most intense peak (3 1 1) using Scherrer formula. The particle size of the samples was found within the range of 12–23 nm for all the compositions. The magnetic and electrical properties of these materials have been studied as a function of temperature. Activation energy and drift mobility have been calculated from the DC electrical resistivity measurements. Dielectric properties such as dielectric constant and dielectric loss tangent were measured at room temperature in the frequency range 100 Hz–1 MHz.  相似文献   

4.
The microwave dielectric properties of La1?xSmx(Mg0.5Sn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La1?xSmx(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La0.97Sm0.03(Mg0.5Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Apparent density of 6.59 g/cm3, dielectric constant (εr) of 19.9, quality factor (Q×f) of 70,200 GHz, and temperature coefficient of resonant frequency (τf) of ?77 ppm/°C were obtained for La0.97Sm0.03(Mg0.5Sn0.5)O3 ceramics that were sintered at 1500 °C for 4 h. The dielectric constant, and τf of La0.97Sm0.03(Mg0.5Sn0.5)O3 ceramics were almost independent with the sintering temperature as the sintering temperature varied from 1450 to 1600 °C.  相似文献   

5.
《Solid State Communications》2002,121(6-7):329-332
Polycrystalline thin films of Ba(Sn0.1Ti0.9)O3 were deposited on Pt coated silicon substrates by pulsed excimer laser ablation technique. The room temperature dielectric constant of the Ba(Sn0.1Ti0.9)O3 films was 350 at a frequency of 100 kHz. The films showed a slightly diffused phase transition in the range of 275–340 K. The polarization hysteresis behavior confirmed the ferroelectric nature of the thin films. Remanent polarization (Pr) and saturation polarization (Ps) were 1.1 and 3.2 μC/cm2, respectively. The asymmetric capacitance–voltage curve for Ba(Sn0.1Ti0.9)O3 was attributed to the difference in the nature of the electrodes. Dispersion in both the real (εr) and imaginary (εr) parts of the dielectric constant at low frequencies with increase in temperature was attributed to space charge contribution in the complex dielectric constant.  相似文献   

6.
The dielectric properties of Cu0.5Tl0.5Ba2Ca2?yMgyCu0.5Zn2.5O10?δ (y = 0, 0.5, 1.0, 1.5) superconductor samples were studied at 79 and 290 K by means of capacitance (C) and conductance (G) measurements with the test frequency (f) in the range of 10 KHz to 10 MHz. A negative capacitance (NC) phenomenon has been observed, which is most likely arising due to higher Fermi level of ceramic superconductor samples than metal electrodes. Also the NC may be due to the space charge located at the multiple insulator–superconductor interfaces (grain boundaries) in the materials. The negative dielectric constant (ε′) and loss factor (tan δ) show strong dispersion at low frequencies. The lower thermal agitation at 79 K may enhance the polarizability and hence the dielectric constants (ε′ and ε″).  相似文献   

7.
Polycrystalline sample of Ba3V2O8 was prepared by a high-temperature solid-state reaction technique. Preliminary X-ray diffraction (XRD) analysis confirms the formation of single-phase compound of hexagonal (rhombohedral) crystal structure at room temperature. Microstructural analysis by scanning electron microscope (SEM) shows that the compound has well defined grains, which are distributed uniformly throughout the surface of the sample. The dielectric properties of the compound studied in a wide frequency range (102–106 Hz) at different temperatures (25–400 °C), exhibits that they are temperature dependent. Detailed analysis of impedance spectra showed that the electric properties of the material are strongly dependent on frequency and temperature. The activation energy, calculated from the temperature dependence of ac conductivity (dielectric data), was found to be 0.23 eV at 50 kHz in the higher temperature region.  相似文献   

8.
The electromagnetic wave absorption properties of ε-Fe3N/Y2O3 nanocomposites were characterized in a frequency range of 0.05–20.05 GHz. The imaginary part of relative permeability μr″ exhibited “twin peak” dispersion and μr″ value retained high over a 0.5–10 GHz range. The real part (εr′) and imaginary part (εr″) of relative permittivity almost kept a low constant in a region of 0.5–10 GHz, respectively. As a result, the resin composites with 51 vol% ε-Fe3N/Y2O3 powders exhibited excellent electromagnetic wave absorption properties (RL<−20 dB) in a frequency range of 0.6–4.4 GHz, with a thickness of 3.3–19.3 mm. A minimum reflection loss of −55 dB was observed at 1.8 GHz with an absorber thickness of 7.05 mm.  相似文献   

9.
Nano-sized Nb2O5/Cr2O3/carbon clusters composite material has been successfully obtained by the calcination of a Nb(HC2O4)5/CrCl3/starch complex under an argon atmosphere. The compositions of the resulting composite materials were determined using ICP, elemental analysis and surface characterization by XRD and TEM. The UV–VIS and XPS spectra of the composites were also obtained. ESR spectral examinations suggest the possibility of an electron transfer in the process of Nb2O5  carbon clusters  Cr2O3. The reduction reaction of methylene blue with the resulting composite material has also been examined.  相似文献   

10.
《Solid State Ionics》2006,177(26-32):2463-2466
New composite materials were prepared using cesium hydrogen sulfate (CsHSO4) or cesium dihydrogen phosphate (CsH2PO4) and phosphosilicate gel (P2O5–SiO2 gel). In X-ray diffraction patterns of these composites, diffraction peaks due to Cs2H5(SO4)2(PO4) and CsH5(PO4)2 were observed for CsHSO4–(P2O5–SiO2 gel) composites and CsH2PO4–(P2O5–SiO2 gel) composites, respectively. These composites showed high conductivities in the order of 10 3 S cm 1 at 150 °C due to melting of Cs2H5(SO4)2(PO4) or CsH5(PO4)2 in the composites. In the cooling process, the CsHSO4–(P2O5–SiO2 gel) composites kept relatively high conductivity to 110 °C where solidification of Cs2H5(SO4)2(PO4) occurs, whereas CsH2PO4–(P2O5–SiO2 gel) composites showed relatively high conductivity continuously to ambient temperature.  相似文献   

11.
Ferroelectric lead zirconate titanate–lead cobalt niobate ceramics with the formula (1  x)Pb(Zr1/2Ti1/2)O3xPb(Co1/3Nb2/3)O3 where x = 0.0–0.5 were fabricated using a high temperature solid-state reaction method. The formation process, the structure and homogeneity of the obtained powders have been investigated by X-ray diffraction method as well as the simultaneous thermal analysis of both differential thermal analysis (DTA) and thermogravimetry analysis (TGA). It was observed that for the binary system (1  x)Pb(Zr1/2Ti1/2)O3xPb(Co1/3Nb2/3)O3, the change in the calcination temperature is approximately linear with respect to the PCoN content in the range x = 0.0–0.5. In addition, X-ray diffraction indicated a phase transformation from a tetragonal to a pseudo-cubic phase when the fraction of PCoN was increased. The dielectric permittivity is remarkably increased by increasing PCoN concentration. The maximum value of remnant polarization Pr (25.3 μC/cm2) was obtained for the 0.5PZT–0.5PCoN ceramic.  相似文献   

12.
Nano-sized ZrO2/Cr2O3/carbon clusters composite materials were successfully obtained by the microwave-irradiated calcinations of a Zr(acac)4/Cr(acac)3/epoxy resin complex. The compositions of the resulting composite materials were determined using ICP, elemental analysis and surface characterization by XRD, SEM and TEM. The UV–Vis spectra of the composites were also obtained. ESR spectral examinations of the composites indicate that an electron transfer takes place in the process Cr2O3  carbon clusters  ZrO2. The composite materials have been found to show visible light-responsive catalytic activities.  相似文献   

13.
Pyrochlore-free lead zirconate titanate – lead zinc niobate ceramics have been systematically investigated in the as-sintered condition as well as after annealing. The ceramics were characterized by dielectric spectroscopy and Sawyer–Tower polarization (PE) measurements. The powders of Pb[(Zr1/2Ti1/2)(1−x)–(Zn1/3Nb2/3)x]O3, where x = 0.1, 0.3 and 0.5 were prepared using the columbite–(wolframite) precursor method. The general trend seems to indicate that the annealed samples become more normal-ferroelectric-like behavior as opposed to the relaxor-ferroelectric-like behavior observed in the as-sintered state. The as-sintered 0.9PZT–0.1PZN ceramic exhibited weak relaxor-ferroelectric behavior, with a relatively low dielectric constant maximum of 14,000 measured at 1 kHz. Annealing resulted in a transition to normal-ferroelectric-like behavior, a shift in the dielectric maximum temperature from 360 °C to 350 °C, and a dramatic increase in the dielectric constant at 1 kHz to a maximum value of 35,000 for the longer anneal. After thermal annealing at 900 °C for one week a strong enhancement of remanent polarization (Pr) was observed.  相似文献   

14.
The complex potassium trioxalatoferrate (III) trihydrate {K3(Fe(C2O4)3 · 3H2O)} was synthesised and characterised by energy dispersion X-ray fluorescence (XRF) and X-ray diffraction (XRD). The electrical and dielectric properties of the complex pellet were studied by ac- and dc-techniques in room temperature and in a temperature range of 293–373 K. The data of the ac conductivity as a function of frequency in a frequency range of 1–100 kHz follow the correlated barrier hopping CBH model and the parameters of the model were determined and connecting them with the optical properties. The temperature dependence of dc conductivity shows that the semiconducting behaviour of conduction phenomenon in the complex is realised by hopping mechanism between localised states and the minimum hopping distance was determined. High relative permittivity of about 30 at 100 kHz was obtained for the complex, which can find technological applications like alternative for the SiO2 insulator in MOS devices.  相似文献   

15.
《Solid State Ionics》2006,177(26-32):2285-2289
Oxygen-ionic and electronic transport in dense (SrFe)1−x(SrAl2)xOz composites, consisting of strontium-deficient Sr(Fe,Al)O3-δ and SrAl2O4 phases, is determined by the properties of perovskite-like solid solution. Increasing the content of SrAl2O4, with a total conductivity as low as 5 × 10 7   10 S × cm 1 at 973–1273 K in air, results in the gradual decrease of the partial conductivities, but also enables the suppression of thermal expansion. Compared to single-phase SrFe1−xAlxO3-δ, (SrFe)1−x(SrAl2)xOz composites exhibit enhanced thermomechanical properties, while the oxygen permeability of these materials has similar values. The composite membranes exhibit stable performance under air/(H2–H2O–N2) and air/(CH4–He) gradients at 973–1173 K. The oxidation of dry methane by oxygen permeating through (SrFe)0.7(SrAl2)0.3Oz results in dominant total oxidation, suggesting the necessity to incorporate a reforming catalyst into the ceramic reactors for natural gas conversion.  相似文献   

16.
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3) (PZT) nano-powder with a perovskite structure was fabricated using sol–gel process. The average crystallite diameter of the PZT powder is calculated to be 23.6 nm and the average agglomerate size is about 200 nm. The 0–3 cement based nano-PZT composites were obtained by pressing the mixture of white cement and the nano-PZT powders under a high pressure followed by steam curing. The properties of the nano-PZT/cement piezoelectric composites have been measured and compared to the PZT/cement composites incorporated with ground coarse PZT particles. The enhanced piezoelectricity of the nano-PZT/cement composites can be attributed to the good connectivity between the nano-PZT particles among the cement matrix.  相似文献   

17.
《Current Applied Physics》2010,10(4):1148-1151
Dense Ni0.37Cu0.20Zn0.43Fe1.92O3.88/(Ba0.6Sr0.4)TiO3 composite thick films were prepared through screen printing method and sintered at 880 °C. The powder XRD patterns confirm the coexistence of the two phases. The dielectric and magnetic properties are also reported. The results show that this kind of magnetic–dielectric composite thick films, possessing high permittivity and saturation magnetization, moderate dielectric tunability, and very low dielectric loss and coercivity, could be used in high-frequency communications for the capacitor–inductor integrating devices such as electromagnetic interference filters and antennas.  相似文献   

18.
Lead indium niobate, Pb(In1/2Nb1/2)O3 or (PIN), is an interesting ferroelectric material, because it can be changed from a disordered state to ordered state by long-time thermal annealing. However, the temperature related to the maximum dielectric constant (Tmax) of PIN in relaxor phase is low (at 1 kHz, Tmax = 66 °C). In this study, to increasing Tmax of PIN, lead titanate, PbTiO3(PT) was thus added to PIN with compositions (1  x)PIN–xPT (for x = 0.1–0.5). The influence of stress on the dielectric properties of (1  x)PIN–xPT ceramics was then investigated. The dielectric properties were measured under various uniaxial compressive stress up to 400 MPa. The results showed that the superimposed compression load reduced the dielectric constant in 0.9PIN–0.1PT. For the other compositions, the dielectric constants first increased with the compressive stress, and then decreased when the stress was further increased up to 400 MPa. The dielectric loss tangent of all composition was found to decrease with increasing compressive stress.  相似文献   

19.
《Current Applied Physics》2009,9(5):1134-1139
Multiferroic particulate composites of Ni0.83Co0.15Cu0.02Fe1.9O4−δ NCCF and lead zirconate titanate (PZT) were prepared conventional ceramic method. The generic formulae x NCCF + (1−x) PZT where x = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mole fractions. The presence of two phases in multiferroic was confirmed with XRD technique. The dielectric constant and loss tangent were studied as a function of frequency (100 Hz to 1 M Hz) and temperature (30–500 °C). The piezoelectric coefficient d33 were also studied on these particulate composites. The hysteresis behaviour was studied to understand the magnetic properties such as saturation magnetization (Ms) and magnetic moment (μB). The static magnetoelectric (ME) voltage coefficient was measured as a function of dc magnetic bias field. A high value of ME output (3151 mV/Oe.cm) was obtained in the composite containing 50% highly magnetostrictive ferrite component NCCF – 50% highly piezoelectric ferroelectric component PZT. These multiferroic particulate composites are used as phase shifters, magnetic sensors, cables etc.  相似文献   

20.
Glasses of the general formula xLi2O·(20?x)CaO·30P2O5·30V2O5·20Fe2O3 with x=0, 5, 10, 15 and 20 mol% were prepared; IR, density, electrical and dielectric properties have been investigated. Lithia-containing glasses revealed more (P2O7)4?, FeO6, V–O? and PO? groups and mostly have lower densities than those of lithia-free ones. The electrical properties showed random behavior by replacing Li2O for CaO, which has been assigned to the change of the glass structure. The results of activation energy and frequency-dependent conductivity indicate that the conduction proceeds via electronic and ionic mechanisms, the former being dominant. The mechanism responsible for the electronic conduction is mostly thermally activated hopping of electrons from Fe(II) ions to neighboring Fe(III) sites and/or from V4+ to V5+. The dielectric constant (ε′) showed values that depend on the structure of glass according to its content of Li2O. The (ε′) values are ranging between 3 and 41 at room temperature for 1 kHz, yet at high temperatures, glass with 20 mol Li2O exhibits values of 110 and 3600 when measurement was carried out in the range 0.1–1 kHz, and at 5 MHz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号