首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A robust feature extraction scheme for the rolling element bearing (REB) fault diagnosis is proposed by combining the envelope extraction and the independent component analysis (ICA). In the present approach, the envelope extraction is not only utilized to obtain the impulsive component corresponding to the faults from the REB, but also to reduce the dimension of vibration sources included in the sensor-picked signals. Consequently, the difficulty for applying the ICA algorithm under the conditions that the sensor number is limited and the source number is unknown can be successfully eliminated. Then, the ICA algorithm is employed to separate the envelopes according to the independence of vibration sources. Finally, the vibration features related to the REB faults can be separated from disturbances and clearly exposed by the envelope spectrum. Simulations and experimental tests are conducted to validate the proposed method.  相似文献   

2.
This paper introduces an automatic feature extraction algorithm for bearing fault diagnosis using correlation filtering-based matching pursuit. This algorithm is described and investigated in theory and practice on both simulated and real bearing vibration signals. First, the vibration model for rolling bearing with fault is derived. Then, the numerical simulation signal being taken as an example, the principle of matching pursuit is mathematically explained and its drawbacks are analyzed. Afterward, to enhance the similarity of model related to the bearing faulty impulses, the model shape parameters are optimized using spectrum kurtosis and smoothing index. After that, the model with optimum shape and period parameters is taken as a template to approximate the impulses in faulty bearing signal. Finally, based on maximizing correlation principle, the optimized cycle parameter being as impuls e repetition period is matched up. The proposed method has been successfully applied in actual vibration signals of rolling element bearing with different faults.  相似文献   

3.
The vibration or acoustic signal from rotating machinery with localized fault usually behaves as the form of amplitude modulation (AM) and/or frequency modulation (FM). The demodulation techniques are conventional ways to reveal the fault characteristics from the analyzed signals. One of these techniques is the time-scale manifold (TSM) ridge demodulation method with the merits of good time–frequency localization and in-band noise suppression properties. However, due to the essential attribute of wavelet ridge, the survived in-band noise on the achieved TSM will still disturb the envelope extraction of fault-induced impulses. This paper presents an improved TSM ridge demodulation method, called exchanged ridge demodulation of TSM, by combining the benefits of the first two TSMs: the noise suppression of the first TSM and the noise separation of the second TSM. Specifically, the ridge on the second TSM can capture the fault-induced impulses precisely while avoiding the in-band noise smartly. By putting this ridge on the first TSM, the corresponding instantaneous amplitude (IA) waveform can represent the real envelope of pure faulty impulses. Moreover, an adaptive selection method for Morlet wavelet parameters is also proposed based on the smoothness index (SI) in the time-scale domain for an optimal time-scale representation of analyzed signal. The effectiveness of the proposed method is verified by means of a simulation study and applications to diagnosis of bearing defects and gear fault.  相似文献   

4.
When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.  相似文献   

5.
李常有  徐敏强  郭耸 《应用声学》2008,27(4):315-320
旋转机械在运行过程中产生的声信号包含了滚动轴承的运行状态信息,且可采用非接触式测量,本文应用它对滚动轴承进行故障诊断。基于morlet小波变换的包络分析对采集的声信号进行降噪及包络处理,然后变换到频域,提取出特征频率并经过转换后作为线性神经网路的输入向量,辨识滚动轴承的状态。实验表明,本方法对滚动轴承故障诊断是有效的。  相似文献   

6.
Fault diagnosis of mechanical equipment is mainly based on the contact measurement and analysis of vibration signals. In some special working conditions, the non-contact fault diagnosis method represented by the measurement of acoustic signals can make up for the lack of contact testing. However, its engineering application value is greatly restricted due to the low signal-to-noise ratio (SNR) of the acoustic signal. To solve this deficiency, a novel fault diagnosis method based on the generalized matrix norm sparse filtering (GMNSF) is proposed in this paper. Specially, the generalized matrix norm is introduced into the sparse filtering to seek the optimal sparse feature distribution to overcome the defect of low SNR of acoustic signals. Firstly, the collected acoustic signals are randomly overlapped to form the sample fragment data set. Then, three constraints are imposed on the multi-period data set by the GMNSF model to extract the sparse features in the sample. Finally, softmax is used to as a classifier to categorize different fault types. The diagnostic performance of the proposed method is verified by the bearing and planetary gear datasets. Results show that the GMNSF model has good feature extraction ability performance and anti-noise ability than other traditional methods.  相似文献   

7.
Vibration signal analysis is the most widely used technique in condition monitoring or fault diagnosis, whereas in some cases vibration-based diagnosis is restrained because of its contact measurement. Acoustic-based diagnosis (ABD) with non-contact measurement has received little attention, although sound field may contain abundant information related to fault pattern. A new scheme of ABD for rolling element bearing fault diagnosis based on near-field acoustic holography (NAH) and gray level co-occurrence matrix (GLCM) is presented in this paper. It focuses on applying the distribution information of sound field to bearing fault diagnosis. A series of rolling element bearings with different types of fault are experimentally studied. Sound fields and corresponding acoustic images in different bearing conditions are obtained by fast Fourier transform (FFT) based NAH. GLCM features are extracted for capturing fault pattern information underlying sound fields. The optimal feature subset selected by improved F-score is fed into multi-class support vector machine (SVM) for fault pattern identification. The feasibility and effectiveness of our proposed scheme is demonstrated on the good experimental results and the comparison with the traditional ABD method. Considering test cost, the quantized level and the number of GLCM features for each characteristic frequency is suggested to be 4 and 32, respectively, with the satisfactory accuracy rate 97.5%.  相似文献   

8.
This paper presents a novel feature extraction scheme for roller bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization (2DNMF). The generalized S transform, which can make up the poor energy concentration of the standard S transform, is introduced to generate the time-frequency representation (TFR). Experiment results on simulated signal and vibration signals measured from rolling element bearings have revealed that the generalized S transform can obtain a more satisfactory TFR than other similar techniques. Furthermore, a new technique called two-dimensional non-negative matrix factorization (2DNMF), which can reduce the computation cost and preserve more structure information hiding in original 2D matrices compared to the NMF, is developed to extract more informative features from the time-frequency matrixes for accurate fault classification. Experimental results on bearing faults classification have demonstrated that the proposed feature extraction scheme has an advantage over other similar feature extraction approaches.  相似文献   

9.
Feature extraction plays an important role in the clustering analysis. In this paper an integrated Autoregressive (AR)/Autoregressive Conditional Heteroscedasticity (ARCH) model is proposed to characterize the vibration signal and the model coefficients are adopted as feature vectors to realize clustering diagnosis of rolling element bearings. The main characteristic is that the AR item and ARCH item are interrelated with each other so that it can depict the excess kurtosis and volatility clustering information in the vibration signal more accurately in comparison with two-stage AR/ARCH model. To testify the correctness, four kinds of bearing signals are adopted for parametric modeling by using the integrated and two-stage AR/ARCH model. The variance analysis of the model coefficients shows that the integrated AR/ARCH model can get more concentrated distribution. Taking these coefficients as feature vectors, K means based clustering is utilized to realize the automatic classification of bearing fault status. The results show that the proposed method can get more accurate results in comparison with two-stage model and discrete wavelet decomposition.  相似文献   

10.
Low-speed hoist bearings are characterized by fault features that are weak and difficult to extract. Multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) is an effective method for extracting periodic pulses in a signal. However, the decomposition effect of MOMEDA largely depends on the selected pulse period and filter length. To address these drawbacks of MOMEDA and accurately extract features from the vibration signal of a hoist bearing, an adaptive feature extraction method is proposed based on iterative autocorrelation (IAC) and MOMEDA. To automatically identify the pulse period, a new evaluation index named autocorrelation kurtosis entropy (AKE) was constructed to select the optimal IAC. To eliminate the influence of the filter length on the decomposition effect, an iterative MOMEDA strategy was designed to gradually enhance signal impulse features. The Case Western Reserve University bearing dataset and bearing data from a self-made hoisting test setup were used to verify the effectiveness of IAC-MOMEDA in extracting weak features. Moreover, the capability of IAC-MOMEDA for features extraction of normal bearing vibration signal was further confirmed by field test data.  相似文献   

11.
An envelope order tracking analysis scheme is proposed in the paper for the fault detection of rolling element bearing (REB) under varying-speed running condition. The developed method takes the advantages of order tracking, envelope analysis and spectral kurtosis. The fast kurtogram algorithm is utilized to obtain both optimal center frequency and bandwidth of the band-pass filter based on the maximum spectral kurtosis. The envelope containing vibration features of the incipient REB fault can be extracted adaptively. The envelope is re-sampled by the even-angle sampling scheme, and thus the non-stationary signal in the time domain is represented as a quasi-stationary signal in the angular domain. As a result, the frequency-smear problem can be eliminated in order spectrum and the fault diagnosis of REB in the varying-speed running condition of the rotating machinery is achieved. Experiments are conducted to verify the validity of the proposed method.  相似文献   

12.
Effective diagnosis of vibration fault is of practical significance to ensure the safe and stable operation of power transformers. Aiming at the traditional problems of transformer vibration fault diagnosis, a novel feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-scale dispersion entropy (MDE) was proposed. In this paper, CEEMDAN method is used to decompose the original transformer vibration signal. Additionally, then MDE is used to capture multi-scale fault features in the decomposed intrinsic mode functions (IMFs). Next, the principal component analysis (PCA) method is employed to reduce the feature dimension and extract the effective information in vibration signals. Finally, the simplified features are sent into density peak clustering (DPC) to get the fault diagnosis results. The experimental data analysis shows that CEEMDAN-MDE can effectively extract the information of the original vibration signals and DPC can accurately diagnose the types of transformer faults. By comparing different algorithms, the practicability and superiority of this proposed method are verified.  相似文献   

13.
As failures of rolling bearings lead to major failures in rotating machines, recent vibration-based rolling bearing fault diagnosis techniques are focused on obtaining useful fault features from the huge collection of raw data. However, too many features reduce the classification accuracy and increase the computation time. This paper proposes an effective feature selection technique based on intrinsic dimension estimation of compressively sampled vibration signals. First, compressive sampling (CS) is used to get compressed measurements from the collected raw vibration signals. Then, a global dimension estimator, the geodesic minimal spanning tree (GMST), is employed to compute the minimal number of features needed to represent efficiently the compressively sampled signals. Finally, a feature selection process, combining the stochastic proximity embedding (SPE) and the neighbourhood component analysis (NCA), is used to select fewer features for bearing fault diagnosis. With regression analysis-based predictive modelling technique and the multinomial logistic regression (MLR) classifier, the selected features are assessed in two case studies of rolling bearings vibration signals under different working loads. The experimental results demonstrate that the proposed method can successfully select fewer features, with which the MLR-based trained model achieves high classification accuracy and significantly reduced computation times compared to published research.  相似文献   

14.
The complex and harsh working environment of rolling bearings cause the fault characteristics in vibration signal contaminated by the noise, which make fault diagnosis difficult. In this paper, a feature enhancement method of rolling bearing signal based on variational mode decomposition with K determined adaptively (K-adaptive VMD), and radial based function fuzzy entropy (RBF-FuzzyEn), is proposed. Firstly, a phenomenon called abnormal decline of center frequency (ADCF) is defined in order to determine the parameter K of VMD adaptively. Then, the raw signal is separated into K intrinsic mode functions (IMFs). A coefficient En for selecting optimal IMFs is calculated based on the center frequency bands (CFBs) of all IMFs and frequency spectrum for original signal autocorrelation operation. After that, the optimal IMFs of which En are bigger than the threshold are selected to reconstruct signal. Secondly, RBF is introduced as an innovative fuzzy function to enhance the feature discrimination of fuzzy entropy between bearings in different states. A specific way for determination of parameter r in fuzzy function is also presented. Finally, RBF-FuzzyEn is used to extract features of reconstructed signal. Simulation and experiment results show that K-adaptive VMD can effectively reduce the noise and enhance the fault characteristics; RBF-FuzzyEn has strong feature differentiation, superior noise robustness, and low dependence on data length.  相似文献   

15.
针对车辆起动电动机电气和机械故障发生时特征信号的时变不平稳特性,进行了时频域分析处理,提出了利用现代信号处理方法对故障信号提取特征向量的方法,主要对起动电动机的电枢和轴承故障进行诊断。在构建电机故障测试实验平台的基础上,利用破坏性实验构造了故障类型,测取了电枢电流和振动信号,分别采用小波分析理论和HHT变换对信号进行分析,通过分解再重构的方式将信号分解成了频率由高到低的不同分量,并获得了故障的特征频率,提取了特征向量。实验结果表明,基于HHT变换的现代信号处理方法在处理时变非平稳信号方面比小波分析理论更具有自适应性,更易识别。  相似文献   

16.
Continuous online monitoring of rotating machines is necessary to assess real-time health conditions so as to enable early detection of operation problems and thus reduce the possibility of downtime. Rolling element bearings are crucial parts of many machines and there has been an increasing demand to find effective and reliable health monitoring technique and advanced signal processing to detect and diagnose the size and location of incipient defects. Condition monitoring of rolling element bearings, comprises four main stages which are, statistical analysis, fault diagnostics, defect size calculation, and prognostics. In this paper the effect of defect size, operating speed, and loading conditions on statistical parameters of acoustic emission (AE) signals, using design of experiment method (DOE), have been investigated to select the most sensitive parameters for diagnosing incipient faults and defect growth on rolling element bearings. A modified and effective signal processing algorithm is designed to diagnose localized defects on rolling element bearings components under different operating speeds, loadings, and defect sizes. The algorithm is based on optimizing the ratio of Kurtosis and Shannon entropy to obtain the optimal band pass filter utilizing wavelet packet transform (WPT) and envelope detection. Results show the superiority of the developed algorithm and its effectiveness in extracting bearing characteristic frequencies from the raw acoustic emission signals masked by background noise under different operating conditions. To experimentally measure the defect size on rolling element bearings using acoustic emission technique, the proposed method along with spectrum of squared Hilbert transform are performed under different rotating speeds, loading conditions, and defect sizes to measure the time difference between the double AE impulses. Measurement results show the power of the proposed method for experimentally measuring size of different fault shapes using acoustic emission signals.  相似文献   

17.
Rolling bearing faults are one of the major reasons for breakdown of industrial machinery and bearing diagnosing is one of the most important topics in machine condition monitoring.The main problem in industrial application of bearing vibration diagnostics is the masking of informative bearing signal by machine noise. The vibration signal of the rolling bearing is often covered or concealed by other structural vibrations sources, such as gears. Although a number of vibration diagnostic techniques have been developed over the last several years, in many cases these methods are quite complicated in use or only effective at later stages of damage development. This paper presents an EMD-based rolling bearing diagnosing method that shows potential for bearing damage detection at a much earlier stage of damage development.By using EMD a raw vibration signal is decomposed into a number of Intrinsic Mode Functions (IMFs). Then, a new method of IMFs aggregation into three Combined Mode Functions (CMFs) is applied and finally the vibration signal is divided into three parts of signal: noise-only part, signal-only part and trend-only part. To further bearing fault-related feature extraction from resultant signals, the spectral analysis of the empirically determined local amplitude is used. To validate the proposed method, raw vibration signals generated by complex mechanical systems employed in the industry (driving units of belt conveyors), including normal and fault bearing vibration data, are used in two case studies. The results show that the proposed rolling bearing diagnosing method can identify bearing faults at early stages of their development.  相似文献   

18.
The fuzzy-entropy-based complexity metric approach has achieved fruitful results in bearing fault diagnosis. However, traditional hierarchical fuzzy entropy (HFE) and multiscale fuzzy entropy (MFE) only excavate bearing fault information on different levels or scales, but do not consider bearing fault information on both multiple layers and multiple scales at the same time, thus easily resulting in incomplete fault information extraction and low-rise identification accuracy. Besides, the key parameters of most existing entropy-based complexity metric methods are selected based on specialist experience, which indicates that they lack self-adaptation. To address these problems, this paper proposes a new intelligent bearing fault diagnosis method based on self-adaptive hierarchical multiscale fuzzy entropy. On the one hand, by integrating the merits of HFE and MFE, a novel complexity metric method, named hierarchical multiscale fuzzy entropy (HMFE), is presented to extract a multidimensional feature matrix of the original bearing vibration signal, where the important parameters of HMFE are automatically determined by using the bird swarm algorithm (BSA). On the other hand, a nonlinear feature matrix classifier with strong robustness, known as support matrix machine (SMM), is introduced for learning the discriminant fault information directly from the extracted multidimensional feature matrix and automatically identifying different bearing health conditions. Two experimental results on bearing fault diagnosis show that the proposed method can obtain average identification accuracies of 99.92% and 99.83%, respectively, which are higher those of several representative entropies reported by this paper. Moreover, in the two experiments, the standard deviations of identification accuracy of the proposed method were, respectively, 0.1687 and 0.2705, which are also greater than those of the comparison methods mentioned in this paper. The effectiveness and superiority of the proposed method are verified by the experimental results.  相似文献   

19.
李国强  谢永成  魏宁 《应用声学》2017,25(3):176-179
装甲车辆起动过程中,直流电动机部分容易发生故障,传统的电机诊断方法都是定期制定维修计划,这种检修方式容易造成维修不足、维修过量以及盲目维修的问题,为了深入分析电动机故障发生时的参数信息的变化,构建一套能够采集电机运行参数的系统,对采集电枢电流和振动信号进行时频域分析,能够反映故障发生的特点;该系统以STM32103C8T6为主控芯片,设计了电流、振动信号采集电路,信号调理电路,对A/D转换模块、数据存储模块进行了编程实现,能够对直流电动机的电枢电流和振动信号进行实时采集,并将数据保存到上位机中进行后续的调用处理;通过测量对比直流电动机起动过程轴承部位发生不同故障时的电流和振动信号,利用MATLAB仿真实现时域内的信号显示,并在MATLAB平台中,编程实现了振动信号的时频域分析;仿真结果表明,该采集系统能够准确测量信号,具有成本低,体积小,精度高等优点,能够为故障特征提取提供较好的数据基础。  相似文献   

20.
发动机是军舰上的重要部件之一,其稳定性对军舰的正常航行具有重要影响。以舰用发动机关键部件(主泵轴承)为具体研究对象,提出了基于功率谱包络能量和支持向量机相结合的故障诊断方法。首先获取了大量可表征舰用发动机主泵轴承健康状态的振动加速度信息,对其进行功率谱分析,获得其功率谱的包络能量;以获取的舰用发动机主泵轴承功率谱的包络能量构建特征向量,并设计基于SVM的舰用发动机主泵轴承故障诊断模型,对主泵轴承的故障进行诊断研究。研究结果表明,采用基于功率谱包络能量和SVM相结合的舰用发动机关键部件故障诊断方法,可以很好实现主泵轴承的故障诊断效能,为舰用发动机主泵轴承故障诊断的工程应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号