首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cube micrometer potassium niobate (KNbO3) powder, as a high effective sonocatalyst, was prepared using hydrothermal method, and then, was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of prepared KNbO3 powder, the sonocatalytic degradation of some organic dyes was studied. In addition, some influencing factors such as heat-treatment temperature and heat-treatment time on the sonocatalytic activity of prepared KNbO3 powder and catalyst added amount and ultrasonic irradiation time on the sonocatalytic degradation efficiency were examined by using UV–visible spectrophotometer and Total Organic Carbon (TOC) determination. The experimental results showed that the best sonocatalytic degradation ratio (69.23%) of organic dyes could be obtained when the conditions of 5.00 mg/L initial concentration, 1.00 g/L prepared KNbO3 powder (heat-treated at 400 °C for 60 min) added amount, 5.00 h ultrasonic irradiation (40 kHz frequency and 300 W output power), 100 mL total volume and 25–28 °C temperature were adopted. Therefore, the micrometer KNbO3 powder could be considered as an effective sonocatalyst for treating non- or low-transparent organic wastewaters.  相似文献   

2.
《Solid State Ionics》2006,177(7-8):779-785
Performance of the proton exchange membrane fuel cell (PEMFC) with composite Nafion–inorganic additives such as silicon oxide (SiO2), titanium dioxide (TiO2), tungsten oxide (WO3), and SiO2/phosphotungstic acid (PWA) has been studied for the operation of temperature of above 100 °C. These composite membranes are prepared by the way of blending of the inorganic oxides with Nafion solution by the recasting procedure. The physico-chemical properties studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques have proved the uniform and homogeneous distribution of these oxides and the consequent enhancement of crystalline character of these membranes. The thermogravimetry analysis (TGA) results have indicated that the additives TiO2 and WO3 have accelerated decomposition of the membrane at an earlier temperature than that of the Nafion membrane. The modified membranes have shown higher uptake of water relative to that of the unmodified membranes. The proton conductivity of the modified membranes, except that of the Nafion/TiO2, is found to be close to that of the native Nafion membrane at high temperature and at 100% relative humidity (RH), however, it was much higher at low RH. The performance of these modified membranes in the PEMFC operated at 110 °C and 70% RH is better than that of Nafion membrane and is found in the order of Nafion/SiO2/PWA > Nafion/SiO2 > Nafion/WO3 > Nafion/TiO2.  相似文献   

3.
We developed new fast proton conducting membranes based on a hybrid inorganic–organic phosphosilicate polymer synthesized from othophosphoric acid, dichlorodimethylsilane, and tetraethoxysilane. The membranes were amorphous, translucent, and flexible. A high concentration of –OH groups and short distances between them promoted fast proton conductivity in dry atmosphere at increased temperatures. The proton conductivity was measured using the electrochemical impedance spectroscopy. Its value increased with rising temperature following the Arrhenius dependence with the activation energy 20 kJ/mol. In dry conditions at 120 °C, the conductivity was 1.6 S/m. The tests in a H2/O2 fuel cell confirmed that the membrane was able to operate at temperatures from 100 to 130 °C using dry input gas streams. The cell performance significantly improved with increasing temperature. The membrane was also tested in a potentiometric gas sensor with the TiHx reference electrode and the Pt sensing electrode. The sensor exhibited fast, stable, and reproducible response to dry H2 and O2 gases at temperatures above 100 °C. We expect the application of our membrane in intermediate temperature fuel cells and gas sensors operating in dry conditions.  相似文献   

4.
Polycrystalline and epitaxial (1 0 0), (1 1 0), and (1 1 1)-oriented Ni3Pt, NiPt, and NiPt3 films were deposited over a range of growth temperatures from 80°C to 700°C. Films grown at moderate temperatures (200–400°C) exhibit growth-induced properties similar to Co–Pt alloys: enhanced and broadened Curie temperature, perpendicular magnetic anisotropy and large coercivity. As in Co–Pt, the magnetic properties suggest a clustering of Ni into platelets on the growth surface, as the films are being grown. Unlike Co–Pt, however, NiPt films exhibit a strong orientational dependence of anisotropy and enhanced Curie temperature, possibly resulting from different types of surface reconstructions which affect the growth surface.  相似文献   

5.
Zinc oxide thin films have been obtained in O2 ambient at a pressure of 1.3 Pa by pulsed laser deposition (PLD) using ZnO powder target and ceramic target. The effect of temperature on structural and optical properties of ZnO thin films was investigated systematically by XRD, SEM, FTIR and PL spectra. The results show that the best structural and optical properties can be achieved for ZnO thin film fabricated at 700 °C using powder target and at 400 °C using ceramic target, respectively. The PL spectrum reveals that the efficiency of UV emission of ZnO thin film fabricated by using powder target is low, and the defect emission of ZnO thin film derived from Zni and Oi is high.  相似文献   

6.
《Solid State Ionics》2006,177(19-25):1985-1989
The application of the electrophoretic deposition (EPD) technique to the preparation of high quality electrolyte films for intermediate temperature solid oxide fuel cells (IT-SOFCs) was investigated. Films of La0.83Sr0.17Ga0.83Mg0.17O2.83 (LSGM) were deposited on Pt and La0.8Sr0.2MnO3 (LSM) substrates from suspensions in acetone/ethanol (3:1 by volume) mixture solvent and sintered at 1300 °C. Pt supported LSGM films, 10–20 μm thick, exhibited good adhesion to the Pt substrate, well-distributed microporosity and some surface roughness. LSM supported films exhibited cracking after sintering at 1300 °C for 3 h. Up to 900 °C the bulk conductivity of the Pt supported LSGM film showed the same behaviour of LSGM pellet (Ea = 0.93 eV and 0.99 eV, respectively). The LSGM film exhibited lower bulk electrical conductivity than the latter (4.1 × 10− 3 and 4.4 × 10− 2 Ω− 1 cm− 1, respectively, at 700 °C). This difference should be ascribed to the slight Ga depletion in the LSGM film. An important issue remains the selection of adequate electrode for LSGM electrolyte films.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(4):1284-1288
TiO2–WO3 heterostructures were synthesized at room temperature, ambient pressure, and short reaction time via a sonochemical approach. TEM and EDX images show that the prepared TiO2–WO3 heterostructures consist of globular agglomerates (∼250 nm in diameter) composed of very small (<5 nm) dense particles (WO3) dispersed inside the globules. The observed less intense monoclinic WO3 diffraction peak (around 2θ = 22° belonging to (0 0 1) plane) and the high intense hexagonal WO3 diffraction peak (around 2θ = 28° belonging to (2 0 0) plane) in XRD indicate that there may be phase transition occurring due to the formation of intimate bond between TiO2 and WO3. In addition, the formation of such new phase was also observed from Raman spectra with a new peak at 955 cm−1, which is due to the symmetric stretching of W = O terminal. The catalytic activity of TiO2–WO3 heterostructures was tested for the degradation of wastewater pollutant containing Tergitol (NP-9) by a process combined with ozonation and it showed two-fold degradation rate compared with ozone process alone.  相似文献   

8.
《Ultrasonics sonochemistry》2014,21(4):1366-1373
Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T = 285 °C) or sonolysis (20 kHz, I = 32 W cm−2, Pac = 0.46 W mL−1, T = 200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4–6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m2 g−1 depending on synthesis conditions. The use of Barrett–Joyner–Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5 %wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C.  相似文献   

9.
Zirconia (ZrO2) nanostructures of various sizes have been synthesized using sol–gel method followed by calcination of the samples from 500 to 700 °C. The calcined ZrO2 powder samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infra-red spectroscopy (FT-IR), UV–visible spectroscopy (UV–vis.), Raman spectroscopy (RS) and thermogravimetric analysis (TGA). The phase transformation from tetragonal (t) to monoclinic (m) was observed. The average diameter of the ZrO2 nanostructures calcined at 500, 600 and 700 °C was calculated to be 8, 17 and 10 nm, respectively. The ZrO2 sample calcined at 500 °C with tetragonal phase shows a direct optical band gap of 5.1 eV. The value of optical band gap is decreased to 4.3 eV for the ZrO2 calcined at 600 °C, which contains both tetragonal (73%) and monoclinic (27%) phases. On further calcination at 700 °C, where the ZrO2 nanostructures have 36% tetragonal and 64% monoclinic phases, the optical band gap is calculated to be 4.8 eV. The enhancement in optical band gap for ZrO2 calcined at 700 °C may be due to the rod like shape of ZrO2 nanostructures. The tetragonal to monoclinic phase transformation was also confirmed by analyzing Raman spectroscopic data. The TG analysis revealed that the ZrO2 nanostructure with dominance of monoclinic phase is found to be more stable over the tetragonal phase. In order to confirm the phase stability of the two phases of ZrO2, single point energy is calculated corresponding to its monoclinic and tetragonal structures using density functional theory (DFT) calculations. The results obtained by theoretical calculations are in good agreement with the experimental findings.  相似文献   

10.
Cadmium stannate thin films were prepared by spray pyrolysis technique using cadmium acetate and tin(II) chloride precursors at substrate temperatures 450 °C and 500 °C. XRD pattern confirms the formation of orthorhombic (1 1 1) cadmium stannate phase for the film prepared at substrate temperature of 500 °C, whereas, films prepared at 450 °C are amorphous. Film formation does not occur at substrate temperature from 300 to 375 °C. SEM images reveal that the surface of the prepared Cd2SnO4 film is smooth. The average optical transmittance of ∼86% is obtained for the film prepared at substrate temperature of 500 °C with the film thickness of 400 nm. The optical band gap value of the films varies from 2.7 to 2.94 eV. The film prepared at 500 °C shows a minimum resistivity of 35.6 × 10−4 Ω cm.  相似文献   

11.
The optical properties of Sc/Si periodic multilayers are analyzed at three wavelengths in the X-ray range: 0.154, 0.712 and 12.7 nm. Fitting the reflectivity curves obtained at these three wavelengths enable us to constrain the parameters, thickness, density and roughness of the various layers, of the studied multilayers. Scattering curves were also measured at 12.7 nm on some samples to obtain an estimate of the correlation length of the roughness. Two sets of multilayers are used, with and without B4C diffusion barrier at the interfaces. To see the efficiency of the B4C layers the measures are performed after annealing up to 400 °C. A dramatic change of the structure of the Sc/Si multilayer is observed between 100 and 200 °C leading to a strong loss of reflectivity. For the Sc/B4C/Si/B4C multilayer the structure is stable up to 200 °C after which a progressive evolution of the stack occurs.  相似文献   

12.
Pt/Fe3O4 core-shell nanoparticles have been prepared by a modified polyol method. Pt nanoparticles were first prepared via the reduction of Pt(acac)2 by polyethylene glycol-200 (PEG-200), and layers of iron oxide were subsequently deposited on the surface of Pt nanoparticles by the thermal decomposition of Fe(acac)3. The nanoparticles were characterized by XRD and HR-TEM. The as-prepared Pt/Fe3O4 nanoparticles have a chemically disordered FCC structure and transformed into chemically ordered fct structure after annealing in reducing atmosphere (4% H2, 96% Ar) at 700 °C. The ordered fct FePt phase has high magnetic anisotropy with coercivity reaching 7.5 kOe at room temperature and 9.3 kOe at 10 K.  相似文献   

13.
These last past years, a major interest has been devoted to decrease the working temperature of solid oxide fuel cells (SOFCs) down to about 700 °C.Apatite materials (La10 ? xSrxSi6O27?x/2) are attractive candidates for solid electrolytes, with a high ionic conductivity at these intermediate temperatures. An apatite powder (x = 1) with a 0.75 µm mean particle size, produced by solid state reaction, was tape cast to obtain green sheets with a thickness of about 260 µm.On one hand, the densification mechanism of the apatite ceramic during the intermediate solid state sintering has been approached. It appeared from the kinetical tests performed under isothermal conditions between 1250 and 1550 °C, that densification could be controlled by the diffusion at grain boundaries of the rare-earth element, La, with an activation energy of 470 kJ/mol.On the other hand, conductivity measurements were performed on apatite samples sintered at 1400 and 1500 °C. The ionic conductivity was mainly sensitive to the presence of secondary phases at 1400 °C. The ionic conductivity of the apatite sintered at 1500 °C (mean grain size = 3.9 µm) is equal to 1.2 × 10? 2 S/cm at 700 °C.  相似文献   

14.
Thermally stimulated current (TSC) spectra were examined for ethylene–propylene (EP) random co-polymer at different charging voltages Vp with positive and negative polarities. Observed TSC spectra showed two well-separated TSC bands, BL and BH, which respectively appeared in the temperature regions below and above 100 °C. Observed Vp dependence of BL was quite different from that of typical polypropylene homo-polymer: As Vp increased, BL band grew keeping its peak position same at 65 °C, and the band shape unchanged, as if the traps responsible for the BL band are a single set of traps with the same trap depth and capture cross section. The trap depth of BL was about 1.9 eV and 1.7 eV for positively charged EP and talc-containing EP samples, respectively. EP samples also showed unique TSC bands above 100 °C: one is a narrow TSC band peaked at 120 °C and the other is an unusual TSC band which was non-vanishing even at 165 °C just before destruction of samples by their melting. Consequently, the utmost stable charge density in EP co-polymer above 100 °C was found to be 3.5 × 10?4 C/m2 and 6.0 × 10 ?4 C/m2 for positively and negatively charged samples, respectively. These equivalent surface charge densities are much larger than those of usual polypropylene homo-polymer.  相似文献   

15.
Electrochromic molybdenum oxide (MoO3) thin films were prepared by electron beam evaporation technique using the dry MoO3 pellets. The films were deposited on glass and fluorine doped tin oxide (SnO2:F or FTO) coated glass substrates at different substrate temperatures like room temperature (RT, 30 °C), 100 °C and 200 °C. The influence of substrate temperature on the structural, surface morphological and optical properties of the films has been studied. The X-ray diffraction analysis showed that the films are having orthorhombic phase MoO3 (α-MoO3) with 〈1 1 0〉 preferred orientation. The laser Raman scattering spectrum shows the polycrystalline nature of MoO3 films deposited at 200 °C. The Raman-active band at 993 cm−1 is corresponding to Mo–O stretching mode that is associated with the unique character of the layered structure of orthorhombic MoO3. Needle—like morphology was observed from the SEM analysis. The energy band gap of MoO3 films was evaluated which lies between 2.8 and 2.3 eV depending on the substrate temperature and substrates. The decrease in band gap value with increasing substrate temperature is owing to the oxygen-ion vacancies. The absorption edge shift shows the coloration effect on the films.  相似文献   

16.
Nanocrystalline cerium oxide (CeO2) thin films were deposited onto the fluorine doped tin oxide coated glass substrates using methanolic solution of cerium nitrate hexahydrate precursor by a simple spray pyrolysis technique. Thermal analysis of the precursor salt showed the onset of crystallization of CeO2 at 300 °C. Therefore, cerium dioxide thin films were prepared at different deposition temperatures from 300 to 450 °C. Films were transparent (T ~ 80%), polycrystalline with cubic fluorite crystal structure and having band gap energy (Eg) in the range of 3.04–3.6 eV. The different morphological features of the film obtained at various deposition temperatures had pronounced effect on the ion storage capacity (ISC) and electrochemical stability. The larger film thickness coupled with adequate degree of porosity of CeO2 films prepared at 400 °C showed higher ion storage capacity of 20.6 mC cm? 2 in 0.5 M LiClO4 + PC electrolyte. Such films were also electrochemically more stable than the other studied samples. The Ce4+/Ce3+ intervalancy charge transfer mechanism during the bleaching–lithiation of CeO2 film was directly evidenced from X-ray photoelectron spectroscopy. The optically passive behavior of the CeO2 film (prepared at 400 °C) is affirmed by its negligible transmission modulation upon Li+ ion insertion/extraction, irrespective of the extent of Li+ ion intercalation. The coloration efficiency of spray deposited tungsten oxide (WO3) thin film is found to enhance from 47 to 53 cm2 C? 1 when CeO2 is coupled with WO3 as a counter electrode in electrochromic device. Hence, CeO2 can be a good candidate for optically passive counter electrode as an ion storage layer.  相似文献   

17.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

18.
Metal-oxide nanocomposites were prepared over screen-printed gold electrodes to be used as room-temperature NOx (nitric-oxide (NO) and nitrogen dioxide (NO2)) sensors. Various weight ratios of SnO2–WO3 and Pt loadings were used for NO sensing. The sensing materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface analysis. The NO-sensing results indicated that SnO2–WO3 (1:2) was more effective than other materials were. The sensor response (S=resistance of N2/resistance of NO=RN2/RNO) for detecting 1000 ppm of NO at room temperature was 2.6. The response time (T90) and recovery time (TR90) was 40 s and 86 s, respectively. By further loading with 0.5% Pt, the sensor response increased to 3.3. The response and recovery times of 0.5% Pt/SnO2–WO3 (1:2) were 40 s and 206 s, respectively. The linearity of the sensor response for a NO concentration range of 10–1000 ppm was 0.9729. A mechanism involving Pt promotion of the SnO2–WO3 heterojunction was proposed for NO adsorption, surface reaction, and adsorbed NO2 desorption.  相似文献   

19.
(1 ? x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–PT) thin films have been deposited on quartz substrates using pulsed laser deposition (PLD). Crystalline microstructure of the deposited PMN–PT thin films has been investigated with X-ray diffraction (XRD). Optical transmission spectroscopy and Raman spectroscopy are used to characterize optical properties of the deposited PMN–PT thin films. The results show that the PMN–PT thin films of perovskite structure have been formed, and the crystalline and optical properties of the PMN–PT thin films can be improved as increasing the annealing temperature to 750 °C, but further increasing the annealing temperature to 950 °C may lead to a degradation of the crystallinity and the optical properties of the PMN–PT thin films. In addition, a weak second harmonic intensity (SHG) has been observed for the PMN–PT thin film formed at the optimum annealing temperature of 750 °C according to Maker fringe method. All these suggest that the annealing temperature has significant effect on the structural and optical properties of the PMN–PT thin films.  相似文献   

20.
A metals–citrate–silica gel was prepared from metallic salts, citric acid and tetraethylorthosilicate by sol–gel method (citrate precursor technique) and it was further used to prepare magnetic nanocomposites. The gel was dried at 100 °C and then calcined at temperatures between 600 and 1000 °C to obtain powder samples. The nanocomposites were characterized by XRD, IR, VSM and TEM techniques. The diffraction patterns show the formation of a single magnetic phase identified as CoFe2O4. Magnetic nanoparticles with average size less than 50 nm were obtained which are well dispersed in the silica matrix. The combination of different metals concentrations and calcining temperatures allowed obtaining samples with magnetization ranging from 3.6 to 25.3 emu/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号