共查询到20条相似文献,搜索用时 77 毫秒
1.
In this paper, numerical models are proposed for linear and nonlinear vibrations analyses of viscoelastic sandwich beams with various viscoelastic frequency dependent laws using the finite element based solution. Real and various complex eigenmodes approaches are investigated as Galerkin bases. Based on harmonic balance method, simplified and general approaches are developed for nonlinear vibration analysis. Analytical frequency-amplitude and phase-amplitude relationships are elaborated based on the numerically computed complex eigenmodes. The equivalent loss factors and frequencies as well as the forced harmonic response and phase curves are performed for sandwich beams with various boundary conditions and frequency dependent viscoelastic laws. 相似文献
2.
An analysis is presented for the vibration and stability of a circular cylindrical shell subjected to a torque. The displacements of a circular shell are written in a series of beam eigenfunctions satisfying the boundary conditions. The kinetic and strain energies of the shell are evaluated analytically, and the frequency eauation of the shell is derived by the Ritz method. The method is applied to circular cylindrical shells under two types of boundary conditions at the edges; the natural frequencies and the divergence torques are calculated numerically, and the effects of the thickness ratio, length ratio and edge conditions on the vibration and stability are studied. 相似文献
3.
The characteristics of vibration and sound radiation from a double shell with the outer shell coated with viscoelastic layer are systematically studied. The shell‘s motion function is expressed by the classical Fliigge operator and the layer‘s motion function is described by three-dimensional Navier equations, whose displacement solutions are expressed by Taylor expansion along the layer thickness. The continuity conditions of displacement and stress between the shell and the layers are used in obtaining the vibration equations. The effects of layer thickness, modulus of elasticity, the loss factor, and the hydro-compressibility on the structural acoustic characteristic are discussed in detail. It showed that the higher the modulus of elasticity is, or the thinner the thickness of layer is, or the smaller the loss factor is, the higher the sound radiation power is. 相似文献
4.
A vibration analysis of an excitation system supported flexibly on a three layer sandwich beam is presented in this paper. The flexibly supported excitation system, which is essentially the primary system, consists of a mass, a spring and a dash-pot. The beam is analyzed separately as a continuous system in a classical way and then its dynamic stiffness at the junction point is combined with that of the primary system to obtain the resultant dynamic stiffness, which in turn is used to develop the expressions for the response of the primary system and the transmissibility provided by the whole system. Both response and transmissibility are evaluated for different geometrical and physical parameters of the sandwich beam. The solution to this problem is also obtained by approximating the sandwich beam by a lumped mass supported on a spring and dash-pot. The results in the two cases are compared. Results obtained from an experimental test-rig substantiate the theoretical results. 相似文献
5.
Here, free vibrations and transient dynamic response analyses of laminated cross-ply oval cylindrical shells are carried out. The formulation is based on higher order theory that accounts for the transverse shear and the transverse normal deformations, and includes zig-zag variation in the in-plane displacements across the thickness of the multi-layered shells. The contributions of inertia effect due to in-plane and rotary motions, and the higher order function arising from the assumed displacement models are included. The governing equations obtained using Lagrangian equations of motion are solved through finite element approach. A detailed parametric study is conducted to bring out the influence of different shell geometry, ovality parameter, lay-up and loading environment on the vibration characteristics related to different modes of vibrations of oval shell. 相似文献
6.
Anooshiravan Farshidianfar Mohammad H. Farshidianfar Wesley O. Smith 《Journal of sound and vibration》2011,330(14):3381-3399
Acoustical excitation along with two other methods was used to excite a long circular cylindrical shell, with simply supported boundary conditions. By comparing different types of excitation, the acoustical method was discovered to have many advantages over other methods of excitation used by previous researchers. Five different analytical methods based on the Love and Flugge theories, were also studied. The objective of this study was to identify the accuracy of each theory, in predicting the natural frequencies and mode shapes of a long circular cylindrical shell. A study was made to compare the predictions of the five analytical methods with experimental measurements. Interesting theoretical and experimental observations were observed for the long shell. Finally, a simple method is proposed to reduce the errors found in some of the analytical methods. 相似文献
7.
Governing equations of motion for vibrations of a general multilayered plate consisting of an arbitrary number of alternate stiff and soft layers of orthotropic materials are derived by using variational principles. Extension, bending and in-plane shear deformations in stiff layers and only transverse shear deformations in soft layers are considered as in conventional sandwich structural analysis. In addition to transverse inertia, longitudinal translatory and rotary inertias are included, as such analysis gives higher order modes of vibration and leads to accurate results for relatively thick plates. Vibration and damping analysis of rectangular simply supported plates consisting of alternate elastic and viscoelastic layers is carried out by taking a series solution and applying the correspondence principle of linear viscoelasticity. The damping effectiveness, in term of the system loss factor, for all families of modes for three-, five- and seven-layered plates is evaluated and its variations with geometrical and material property parameters are investigated. 相似文献
8.
LIU QingYu FANG ShiLiang CHENG Qiang CAO Jin AN Liang LUO XinWei 《中国科学:物理学 力学 天文学(英文版)》2013,(7):1339-1345
Target dimension is important information in underwater target classification. An intrinsic mode characteristic extraction method in underwater cylindrical shell acoustic radiation was studied in this paper based on the mechanism of shell vibration to gain the information about its dimension instead of accurate inversion processing. The underwater cylindrical shell vibration and acoustic radiation were first analyzed using mode decomposition to solve the wave equation. The characteristic of acoustic radiation was studied with different cylindrical shell lengths, radii, thickness, excitation points and fine structures. Simulation results show that the intrinsic mode in acoustic radiation spectrum correlates closely with the geometry dimensions of cylindrical shells. Through multifaceted analysis, the strongest intrinsic mode characteristic extracted from underwater shell acoustic radiated signal was most likely relevant to the radiated source radius. Then, partial information about unknown source dimension could be gained from intrinsic mode characteristic in passive sonar applications for underwater target classification. Experimental data processing results verified the effectiveness of the method in this paper. 相似文献
9.
Nihal Eratlı Hakan Argeso Faruk F. Çalım Beytullah Temel Mehmet H. Omurtag 《Journal of sound and vibration》2014
The objective of this study is to investigate the influence of the rotary inertia on dynamic behavior of linear viscoelastic cylindrical and conical helixes by means of the Laplace transform-mixed finite element formulation and solution. The element matrix is based on the Timoshenko beam theory. The influence of rotary inertias is considered in the dynamic analysis, which is original in the literature. Rectangular, sine and step type of impulsive loads are applied on helices having rectangular cross-sections with various aspect ratios. The Kelvin and standard models are used for defining the linear viscoelastic material behavior; and by means of the correspondence principle (the elastic-viscoelastic analogy), the material parameters are replaced with their complex counterparts in the Laplace domain. The analysis is carried out in the Laplace domain and the results are transformed back to time space numerically by modified Durbin?s algorithm. First, the solution algorithm is verified using the existing open sources in the literature and afterwards some benchmark examples such as conical viscoelastic rods are handled. 相似文献
10.
11.
Cylindrical shells composed of concentric layers may be designed to affect the way that elastic waves are generated and propagated, particularly when some layers are anisotropic. To aid the design process, the present work develops a wave based analysis of the Green's function for a layered cylindrical shell in which the response is given as a sum of waves propagating in the axial coordinate. The analysis assumes linear Hookean materials for each layer. It uses finite element discretizations in the radial coordinate and Fourier series expansions in the circumferential coordinate, leading to linear equations in the axial wavenumber domain that relate shell displacements and forces. Inversion to the axial domain is accomplished via a state-space formulation that is evaluated using residue integration. The resulting expression for the Green's function for each circumferential harmonic is a summation over the natural waves of the shell. The finite element discretization in the radial direction allows the approach to be used for arbitrarily thick shells. The approach is benchmarked to results from an isotropic shell and numerical examples are given for a shell composed of a fiber-reinforced material. The numerical examples illustrate the effect of fiber orientation on the Green's function. 相似文献
12.
M. Meunier 《Journal of sound and vibration》2003,263(1):131-151
In this paper a new analytical model is presented that accurately predicts the forced response of fibre reinforced plastic (FRP) sandwich plates subjected to transverse applied loads. It is based on Reddy's refined high order shear deformation theory and offers the feasibility of accounting for the viscoelastic properties of the constitutive materials without restriction to the steady state motion. This is achieved by modelling the viscoelastic behaviour of the constitutive materials using the Golla Hughes McTavish mathematical tool. Validation of the new approach is achieved by comparing results under harmonic loading conditions against data obtained using the proposed new analytical model. Subsequently, predicted responses for a given FRP sandwich plate under various transverse applied loads are presented. The results outline the importance of being able to account for the viscoelastic properties of the constitutive materials when modelling the dynamic behaviour of sandwich structures. 相似文献
13.
降低加肋双层圆柱壳辐射噪声线谱的结构声学设计 总被引:1,自引:0,他引:1
为降低双层圆柱壳辐射噪声线谱,从控制内壳振动响应和衰减壳间振动传递率进行结构声学设计。采用机械阻抗理论分析了环肋圆柱壳模态响应控制机理;由环肋振动方程推导分析了环肋径向机械阻抗特性;基于阻抗失配、波形转换原理提出一种阻抗加强环肋,分析了振动波阻抑特性;利用阻尼减振技术,综合考虑肋板的刚度、阻尼特性,设计了金属橡胶层叠肋板;结合数值计算实例,分析了设计双层壳模型的声辐射性能。结果表明:设计的双层加肋圆柱壳结构能有效降低辐射噪声线谱,在分析频段内辐射声压线谱平均降低约6.6 dB。研究结果对研制低噪声水下航行器具有良好的工程价值和应用前景。 相似文献
14.
Baillard A Conoir JM Decultot D Maze G 《The Journal of the Acoustical Society of America》2000,107(6):3208-3216
The acoustic scattering from a fluid-loaded stiffened cylindrical shell is described by using elasticity theory. The cylindrical shell is reinforced by a thin internal plate which is diametrically attached along the tube. In this model, cylindrical shell displacements and constraints expressed from elasticity theory are coupled to those of the plate at the junctions, where plate vibrations are described by using plate theory. The present model is first validated at low frequency range (k1a approximately 5-40) by comparison with a previous model based on the Timoshenko-Mindlin thin shell theory and by experimental results. Theoretical and experimental resonance spectra are then analyzed in a high frequency range (k1a approximately 120-200). Only resonances due to the S0 wave are clearly observed in this frequency range, and their modes of propagation are identified. Furthermore, A0 wave propagation is detected, because of the presence of the reflection of this wave at the shell-plate junctions. 相似文献
15.
C.C. Huang 《Journal of sound and vibration》1976,45(4):529-537
This paper presents a theoretical analysis of a dynamic boundary value problem of the axially-symmetric motion of isotropic, homogeneous, linearly-viscoelastic, thick, cylindrical shells subjected to time-dependent surface tractions and/or time-dependent boundary conditions. Williams' modal-acceleration method has been used to treat the time-dependent boundary conditions. Two forms of the correspondence principle are used to obtain the governing differential equations and the quasi-static solutions. A numerical example is given to study the transient response of a cylindrically hollow rod subject to longitudinal impacts. 相似文献
16.
V. V. Tyutekin 《Acoustical Physics》2004,50(3):273-277
Properties of helical waves of a cylindrical shell described by Kirchhoff-Love equations are considered. The problem is reduced to the case of the propagation of plane waves in an equivalent plate. On the basis of the corresponding dispersion equation and its solution, a conclusion is made about the anisotropy of the shell properties. Dispersion curves are plotted for different angles of propagation of helical waves with respect to the shell axis. Displacements of the shell along and across the direction of wave propagation are calculated. 相似文献
17.
In the free vibration analysis of clamped non-circular cylindrical shell panels, a matrix method has been used to solve the governing differential equations, which have variable coefficients. The effect of the curvature, thickness ratio and aspect ratio on the natural frequencies has been studied. The results obtained for circular cylindrical panels are compared with other available results. The convergence of the solution is found to be good. 相似文献
18.
Space harmonic analysis of sound radiation from a submerged periodic ring-stiffened cylindrical shell 总被引:1,自引:0,他引:1
An analytical method is developed to study radiated sound power characteristics from an infinite submerged periodically stiffened cylindrical shell excited by a radial cosine harmonic line force. The harmonic motion of the shell and the pressure field in the fluid are described by Flügge shell equations and Helmholtz equation, respectively. By using periodic theory of space harmonic analysis, the response of the periodic structure to harmonic excitations has been obtained by expanding it in terms of a series of space harmonics. Radiated sound power on the shell wall along the axial direction and the influence of different parameters on the results are studied, respectively. A conclusion is drawn that the stiffeners have a great influence at low and high frequencies while have a slight influence at intermediate frequencies for low circumferential mode orders. The work will give some guidelines for noise reduction of this kind of shell. 相似文献
19.
Vibration and dynamic stability of a traveling sandwich beam 总被引:1,自引:0,他引:1
The vibration and dynamic stability of a traveling sandwich beam are studied using the finite element method. The damping layer is assumed to be linear viscoelastic and almost incompressible. The extensional and shear moduli of the viscoelastic material are characterized by complex quantities. Complex-eigenvalue problems are solved by the state-space method, and the natural frequencies and modal loss factors of the composite beam are extracted. The effects of stiffness and thickness ratio of the viscoelastic and constrained layers on natural frequencies and modal loss factors are reported. Tension fluctuations are the dominant source of excitation in a traveling sandwich material, and the regions of dynamic instability are determined by modified Bolotin's method. Numerical results show that the constrained damping layer stabilizes the traveling sandwich beam. 相似文献
20.
S. Chonan 《Journal of sound and vibration》1982,85(4):525-537
This paper is a study of the vibration and stability of symmetrical sandwich cantilevers with elastic bonding. The horizontal displacements of the face layer and the core are discontinuous due to the elasticity of the interface bond. The shear traction at the interface is assumed to be proportional to the relative horizontal displacement of the layers. The core layer is subjected to a horizontal (conservative) or tangential (non-conservative) axial force at its free end. It is shown that a symmetrical sandwich beam with elastic bonding has two kinds of vibration modes: i.e., bending modes and longitudinal modes. Numerical results are given for a beam composed of FRP face layers and a syntactic-foam core layer. It is shown that the divergence and the flutter type instability loads, as well as the natural frequency, are affected considerably by the stiffness of the interface bond. 相似文献