共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, numerical models are proposed for linear and nonlinear vibrations analyses of viscoelastic sandwich beams with various viscoelastic frequency dependent laws using the finite element based solution. Real and various complex eigenmodes approaches are investigated as Galerkin bases. Based on harmonic balance method, simplified and general approaches are developed for nonlinear vibration analysis. Analytical frequency-amplitude and phase-amplitude relationships are elaborated based on the numerically computed complex eigenmodes. The equivalent loss factors and frequencies as well as the forced harmonic response and phase curves are performed for sandwich beams with various boundary conditions and frequency dependent viscoelastic laws. 相似文献
3.
4.
An analysis is presented for the vibration and stability of a circular cylindrical shell subjected to a torque. The displacements of a circular shell are written in a series of beam eigenfunctions satisfying the boundary conditions. The kinetic and strain energies of the shell are evaluated analytically, and the frequency eauation of the shell is derived by the Ritz method. The method is applied to circular cylindrical shells under two types of boundary conditions at the edges; the natural frequencies and the divergence torques are calculated numerically, and the effects of the thickness ratio, length ratio and edge conditions on the vibration and stability are studied. 相似文献
5.
敷设阻尼材料的双层圆柱壳声辐射性能分析 总被引:6,自引:1,他引:6
研究了外层壳上敷设粘弹性阻尼材料的双层壳体的振动和声辐射性能,采用经典Flugge微分算子描述壳体的运动,敷设粘弹性阻尼材料的双层壳体的粘弹性阻尼层的运动用三维Navier方程描述,将阻尼沿厚度方向的位移用泰勒展开表示,利用位移和应力的连续性边界条件建立振动方程。详细讨论了阻尼层厚度、弹性模量、损耗因子及静水压缩因子等参数对双层壳体振动和声辐射的影响,表明阻尼材料的弹性模量越高,阻尼层越薄,损耗因子越小,壳体的辐射声功率越高;对于较高频率的激励,必需考虑阻尼层质量的影响,选择密度低的阻尼材料对减振降噪有利。 相似文献
6.
In this paper, a numerical method to model the dynamic behavior of an isotropic helical spring is coupled with optimization algorithms to construct a dynamic optimization method based not only on mechanical and geometrical objective functions and constraints; but also on dynamic ones. In the proposed dynamic optimization problem, four geometric parameters are chosen as design variables (wire diameter, middle helix diameter, active coils numbers and spring pitch). In addition of mechanical and geometrical constraints, dynamic ones related to natural frequencies of the helical spring are added. Two objective functions are chosen to be optimized: the spring mass and its natural frequencies. This method is then applied to the case of circular cross section helical spring, and then optimization results are presented and discussed. 相似文献
7.
A vibration analysis of an excitation system supported flexibly on a three layer sandwich beam is presented in this paper. The flexibly supported excitation system, which is essentially the primary system, consists of a mass, a spring and a dash-pot. The beam is analyzed separately as a continuous system in a classical way and then its dynamic stiffness at the junction point is combined with that of the primary system to obtain the resultant dynamic stiffness, which in turn is used to develop the expressions for the response of the primary system and the transmissibility provided by the whole system. Both response and transmissibility are evaluated for different geometrical and physical parameters of the sandwich beam. The solution to this problem is also obtained by approximating the sandwich beam by a lumped mass supported on a spring and dash-pot. The results in the two cases are compared. Results obtained from an experimental test-rig substantiate the theoretical results. 相似文献
8.
Here, free vibrations and transient dynamic response analyses of laminated cross-ply oval cylindrical shells are carried out. The formulation is based on higher order theory that accounts for the transverse shear and the transverse normal deformations, and includes zig-zag variation in the in-plane displacements across the thickness of the multi-layered shells. The contributions of inertia effect due to in-plane and rotary motions, and the higher order function arising from the assumed displacement models are included. The governing equations obtained using Lagrangian equations of motion are solved through finite element approach. A detailed parametric study is conducted to bring out the influence of different shell geometry, ovality parameter, lay-up and loading environment on the vibration characteristics related to different modes of vibrations of oval shell. 相似文献
9.
Anooshiravan Farshidianfar Mohammad H. Farshidianfar Wesley O. Smith 《Journal of sound and vibration》2011,330(14):3381-3399
Acoustical excitation along with two other methods was used to excite a long circular cylindrical shell, with simply supported boundary conditions. By comparing different types of excitation, the acoustical method was discovered to have many advantages over other methods of excitation used by previous researchers. Five different analytical methods based on the Love and Flugge theories, were also studied. The objective of this study was to identify the accuracy of each theory, in predicting the natural frequencies and mode shapes of a long circular cylindrical shell. A study was made to compare the predictions of the five analytical methods with experimental measurements. Interesting theoretical and experimental observations were observed for the long shell. Finally, a simple method is proposed to reduce the errors found in some of the analytical methods. 相似文献
10.
为了开发与应用新型列车车体降噪内装结构,基于混合FE-SEA法对轨道车辆用新型橡胶泡棉夹芯板进行隔声与声辐射预测建模,并进行了试验验证,进而利用该模型分析了橡胶泡棉孔隙率与芯皮厚度比对其隔声性能、声辐射性能的影响规律,并通过敷设阻尼层优化了其声学性能。最后,在侧墙组合结构的声学设计中评价了其实际应用效果。结果表明:随着孔隙率的逐步下降,橡胶泡棉夹芯板隔声量上升趋势较为明显,而辐射声功率持续降低;随着芯皮厚度比的逐步提高,夹芯板隔声量呈略微上升趋势,辐射声功率则相应降低。在远离声源一侧的橡胶泡棉蒙皮外侧敷设阻尼层的效果最优,优化后夹芯板计权隔声量提高0.7dB,总声功率级降低0.7dB;相较于传统木质胶合板和铝蜂窝板,橡胶泡棉夹芯板相较于传统内装板材在结构隔声设计中具有轻量化优势。 相似文献
11.
12.
Governing equations of motion for vibrations of a general multilayered plate consisting of an arbitrary number of alternate stiff and soft layers of orthotropic materials are derived by using variational principles. Extension, bending and in-plane shear deformations in stiff layers and only transverse shear deformations in soft layers are considered as in conventional sandwich structural analysis. In addition to transverse inertia, longitudinal translatory and rotary inertias are included, as such analysis gives higher order modes of vibration and leads to accurate results for relatively thick plates. Vibration and damping analysis of rectangular simply supported plates consisting of alternate elastic and viscoelastic layers is carried out by taking a series solution and applying the correspondence principle of linear viscoelasticity. The damping effectiveness, in term of the system loss factor, for all families of modes for three-, five- and seven-layered plates is evaluated and its variations with geometrical and material property parameters are investigated. 相似文献
13.
LIU QingYu FANG ShiLiang CHENG Qiang CAO Jin AN Liang LUO XinWei 《中国科学:物理学 力学 天文学(英文版)》2013,(7):1339-1345
Target dimension is important information in underwater target classification. An intrinsic mode characteristic extraction method in underwater cylindrical shell acoustic radiation was studied in this paper based on the mechanism of shell vibration to gain the information about its dimension instead of accurate inversion processing. The underwater cylindrical shell vibration and acoustic radiation were first analyzed using mode decomposition to solve the wave equation. The characteristic of acoustic radiation was studied with different cylindrical shell lengths, radii, thickness, excitation points and fine structures. Simulation results show that the intrinsic mode in acoustic radiation spectrum correlates closely with the geometry dimensions of cylindrical shells. Through multifaceted analysis, the strongest intrinsic mode characteristic extracted from underwater shell acoustic radiated signal was most likely relevant to the radiated source radius. Then, partial information about unknown source dimension could be gained from intrinsic mode characteristic in passive sonar applications for underwater target classification. Experimental data processing results verified the effectiveness of the method in this paper. 相似文献
14.
Nihal Eratlı Hakan Argeso Faruk F. Çalım Beytullah Temel Mehmet H. Omurtag 《Journal of sound and vibration》2014
The objective of this study is to investigate the influence of the rotary inertia on dynamic behavior of linear viscoelastic cylindrical and conical helixes by means of the Laplace transform-mixed finite element formulation and solution. The element matrix is based on the Timoshenko beam theory. The influence of rotary inertias is considered in the dynamic analysis, which is original in the literature. Rectangular, sine and step type of impulsive loads are applied on helices having rectangular cross-sections with various aspect ratios. The Kelvin and standard models are used for defining the linear viscoelastic material behavior; and by means of the correspondence principle (the elastic-viscoelastic analogy), the material parameters are replaced with their complex counterparts in the Laplace domain. The analysis is carried out in the Laplace domain and the results are transformed back to time space numerically by modified Durbin?s algorithm. First, the solution algorithm is verified using the existing open sources in the literature and afterwards some benchmark examples such as conical viscoelastic rods are handled. 相似文献
15.
16.
Cylindrical shells composed of concentric layers may be designed to affect the way that elastic waves are generated and propagated, particularly when some layers are anisotropic. To aid the design process, the present work develops a wave based analysis of the Green's function for a layered cylindrical shell in which the response is given as a sum of waves propagating in the axial coordinate. The analysis assumes linear Hookean materials for each layer. It uses finite element discretizations in the radial coordinate and Fourier series expansions in the circumferential coordinate, leading to linear equations in the axial wavenumber domain that relate shell displacements and forces. Inversion to the axial domain is accomplished via a state-space formulation that is evaluated using residue integration. The resulting expression for the Green's function for each circumferential harmonic is a summation over the natural waves of the shell. The finite element discretization in the radial direction allows the approach to be used for arbitrarily thick shells. The approach is benchmarked to results from an isotropic shell and numerical examples are given for a shell composed of a fiber-reinforced material. The numerical examples illustrate the effect of fiber orientation on the Green's function. 相似文献
17.
M. Meunier 《Journal of sound and vibration》2003,263(1):131-151
In this paper a new analytical model is presented that accurately predicts the forced response of fibre reinforced plastic (FRP) sandwich plates subjected to transverse applied loads. It is based on Reddy's refined high order shear deformation theory and offers the feasibility of accounting for the viscoelastic properties of the constitutive materials without restriction to the steady state motion. This is achieved by modelling the viscoelastic behaviour of the constitutive materials using the Golla Hughes McTavish mathematical tool. Validation of the new approach is achieved by comparing results under harmonic loading conditions against data obtained using the proposed new analytical model. Subsequently, predicted responses for a given FRP sandwich plate under various transverse applied loads are presented. The results outline the importance of being able to account for the viscoelastic properties of the constitutive materials when modelling the dynamic behaviour of sandwich structures. 相似文献
18.
降低加肋双层圆柱壳辐射噪声线谱的结构声学设计 总被引:1,自引:0,他引:1
为降低双层圆柱壳辐射噪声线谱,从控制内壳振动响应和衰减壳间振动传递率进行结构声学设计。采用机械阻抗理论分析了环肋圆柱壳模态响应控制机理;由环肋振动方程推导分析了环肋径向机械阻抗特性;基于阻抗失配、波形转换原理提出一种阻抗加强环肋,分析了振动波阻抑特性;利用阻尼减振技术,综合考虑肋板的刚度、阻尼特性,设计了金属橡胶层叠肋板;结合数值计算实例,分析了设计双层壳模型的声辐射性能。结果表明:设计的双层加肋圆柱壳结构能有效降低辐射噪声线谱,在分析频段内辐射声压线谱平均降低约6.6 dB。研究结果对研制低噪声水下航行器具有良好的工程价值和应用前景。 相似文献
19.
Baillard A Conoir JM Decultot D Maze G 《The Journal of the Acoustical Society of America》2000,107(6):3208-3216
The acoustic scattering from a fluid-loaded stiffened cylindrical shell is described by using elasticity theory. The cylindrical shell is reinforced by a thin internal plate which is diametrically attached along the tube. In this model, cylindrical shell displacements and constraints expressed from elasticity theory are coupled to those of the plate at the junctions, where plate vibrations are described by using plate theory. The present model is first validated at low frequency range (k1a approximately 5-40) by comparison with a previous model based on the Timoshenko-Mindlin thin shell theory and by experimental results. Theoretical and experimental resonance spectra are then analyzed in a high frequency range (k1a approximately 120-200). Only resonances due to the S0 wave are clearly observed in this frequency range, and their modes of propagation are identified. Furthermore, A0 wave propagation is detected, because of the presence of the reflection of this wave at the shell-plate junctions. 相似文献
20.
V. V. Tyutekin 《Acoustical Physics》2004,50(3):273-277
Properties of helical waves of a cylindrical shell described by Kirchhoff-Love equations are considered. The problem is reduced to the case of the propagation of plane waves in an equivalent plate. On the basis of the corresponding dispersion equation and its solution, a conclusion is made about the anisotropy of the shell properties. Dispersion curves are plotted for different angles of propagation of helical waves with respect to the shell axis. Displacements of the shell along and across the direction of wave propagation are calculated. 相似文献