首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Doped lanthanum manganese chromite based perovskite, La0.7A0.3Cr0.5Mn0.5O3 ? δ (LACM, A = Ca, Sr, Ba), on yttria-stabilized zirconia (YSZ) electrolyte is investigated as potential electrode materials for solid oxide fuel cells (SOFCs). The electrical conductivity and electrochemical activity of LACM depend on the A-site dopant. The best electrochemical activity is obtained on the La0.7Ca0.3Cr0.5Mn0.5O3 ? δ/YSZ (LCCM/YSZ) composite electrodes. The conductivity of LCCM is 29.9 S cm? 1 at 800 °C in air, and the electrode polarization resistance (RE) of the LCCM/YSZ composite cathode for the O2 reduction reaction is 0.5 Ω cm2 at 900 °C. The effect of Gd-doped ceria (GDC) impregnation on the LCCM cathode polarization resistances is also studied. GDC impregnation significantly enhances the electrochemical activity of the LCCM cathode. In the case of the 6.02 mg cm? 2 GDC-impregnated LCCM cathode, RE is 0.4 Ω cm2 at 800 °C, ~ 60 times smaller than 24.4 Ω cm2 measured on a LCCM cathode without the GDC impregnation. Finally the electrochemical activities of the doped lanthanum manganese chromites for the H2 oxidation reaction are also investigated.  相似文献   

2.
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1–5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 °C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50–150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 °C along with relatively resolved glow peak at 180 °C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 °C along with two well defined peaks at ~215 and 275 °C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail.  相似文献   

3.
This work reports a study of nanostructured copper-doped gadolinium cermet (Cu-CGO) composite anodes prepared via conventional synthesis (CS) and microwave-synthesis (MS) involving the glycine–nitrate process (GNP). A detailed investigation on the mechanical properties, electrical conductivity and electrochemical performance of prepared Cu0.5(Ce0.9Gd0.1)0.5O2−δ anodes is included. The prepared samples were characterized by techniques, such as XRD, EDX, SEM and electrical characterizations. After reduction in 10% H2 and 90% N2, the DC conductivities of the Cu-CGO anodes prepared via CS-GNP and MS-GNP are found to be 5.43×103 and 1.09×104 S cm−1 at 700 °C, respectively. The electrochemical performances of the spin-coated anode symmetrical cells sintered at 700 °C are evaluated at cell operating temperatures of 600, 700 and 800 °C. The lowest area specific resistance (ASR) values for the Cu-CGO/CGO/Cu-CGO symmetrical cells prepared via the MS-GNP route at operating temperatures of 600, 700 and 800 °C are found to be 0.34, 0.71 and 1.10 Ω cm2, respectively. The as-prepared (via MS-GNP) Cu-CGO anode exhibits excellent electrical and electrochemical performance consistent with the uniform nanostructured morphology compared with the anode prepared via CS-GNP.  相似文献   

4.
A protonated Ba6Mn24O48 phase with an original tunnel crystal structure and mixed-valent manganese has been prepared in the form of powders and millimeter-long fibrous crystals (whiskers). A combined study either by impedance spectroscopy or transport measurements revealed that the Ba6Mn24O48 phase demonstrates mixed conductivity with both proton and electronic components reaching ~ 10? 3 Ω? 1?cm? 1 at room temperature.  相似文献   

5.
《Solid State Ionics》2009,180(40):1702-1709
Nanopowders of Ca1  xEuxMnO3 (0.1  x  0.4) manganites were synthesized as a single phase using the auto gel-combustion method. The citrate method shows to be simple and appropriate to obtain single phases avoiding segregation or contamination. The Ca1  xEuxMnO3 system has been synthesized at 800 °C during 18 h, against the conventional method of mixing oxides used to obtain these materials at higher temperatures of synthesis. The formation reaction was monitored by X-ray diffraction (XRD) analysis and an infrared absorption technique (FTIR). The polycrystalline powders are characterised by nanometric particle size, ∼ 48 nm as determined from X-ray line broadening analysis using the Scherrer equation. Morphological analysis of the powders, using the scanning electron microscope (SEM), revealed that all phases are homogeneous and the europium-substituted samples exhibit a significant decrease in the grain size when compared with the undoped samples. The structure refinement by using the Rietveld method indicates that the partial calcium substitution by europium (for x  0.3) modifies the orthorhombic structure of the CaMnO3 perovskite towards a monoclinic phase. All manganites show two active IR vibrational modes around 400 and 600 cm 1. The high temperature dependence of electrical resistivity (between 25 and 600 °C) allows us to conclude that all the samples exhibit a semiconductor behaviour and the europium causes a decrease in the electrical resistivity by more than one order of magnitude. The results can be well attributed to the Mn4+/Mn3+ ratio.  相似文献   

6.
LiNi0.5Mn1.5O4 was synthesized as a cathode material for Li-ion batteries by a sonochemical reaction followed by annealing, and was characterized by XRD, SEM, HRTEM and Raman spectroscopy in conjunction with electrochemical measurements. Two samples were prepared by a sonochemical process, one without using glucose (sample-S1) and another with glucose (sample-S2). An initial discharge specific capacity of 130 mA h g−1 is obtained for LiNi0.5Mn1.5O4 at a relatively slow rate of C/10 in galvanostatic charge–discharge cycling. The capacity retention upon 50 cycles at this rate was around 95.4% and 98.9% for sample-S1 and sample-S2, respectively, at 30 °C.  相似文献   

7.
Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge–discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g−1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g−1).  相似文献   

8.
Novel spinel Li1.15Mn1.96Co0.03Gd0.01O4 + δ was synthesized by high temperature solid-state reaction method. The product was identified as well-defined spinel phase by X-ray diffraction (XRD); the SEM images illustrated that the particle distribution was well-proportioned. The initial special capacity was 126.5 and 128.1 mAh g? 1 at 25 and 50 °C. The fading rate was 0.017% and 0.098% per cycle under 0.5 °C at 25 and 50 °C, respectively. The results showed that Li1.15Mn1.96Co0.03Gd0.01O4 + δ displayed excellent capacity and cycleability.  相似文献   

9.
《Solid State Ionics》2009,180(40):1683-1689
The complex perovskite (Pr0.75Sr0.25)1  xCr0.5Mn0.5O3  δ (PSCM) has been prepared and studied as possible anode material for high-temperature solid oxide fuel cells (SOFCs). PSCM exhibits GdFeO3-type structure and is both physically and chemically compatible with the conventional YSZ electrolyte. The reduction of PSCM resulted in structural change from orthorhombic Pbnm to cubic Pm-3m. Selected area electron diffraction (SAED) analysis on the reduced phases indicated the presence of a √2 × √2 × 2 superlattice. The total conductivity values of ∼ 75% dense Pr0.75Sr0.25Cr0.5Mn0.5O3  δ at 900 °C in air and 5% H2/Ar are 9.6 and 0.14 S cm 1 respectively. The conductivity of PSCM drops with decreasing Po2 and is a p-type conductor at all studied Po2. The average TEC of Pr0.75Sr0.25Cr0.5Mn0.5O3  δ is 9.3 × 10 6 K 1, in the temperature range of 100–900 °C and is close to that of YSZ electrolyte. The anode polarization resistance of PSCM in wet 5%H2 is 1.31 Ω cm2 at 910 °C and in wet CH4 at 930 °C; the polarization resistance is 1.29 Ω cm2. PSCM was unstable at 900 °C in unhumidified hydrogen. Cell performance measurements carried out using graded PSCM and La0.8Sr0.2MnO3 as anode and cathode respectively yielded a maximum power density of 0.18 W cm 2 in wet 5%H2/Ar at 910 °C and the corresponding current density was 0.44 A cm 2 at 0.4 V. The activation energy for the electrochemical cell operating in wet (3% H2O) 5%H2/Ar fuel is 85 kJ mol 1.  相似文献   

10.
A large difference in thermal expansion coefficient of electrode and electrolyte leads to imperfect electrode/electrolyte interface and hence significant polarization losses in solid oxide fuel cells. To overcome the difficulties associated with electrode and electrode/electrolyte interface, there is need to fabricate the composite cathode. Thus the present paper deals with study of La0.6Sr0.4Co0.2Fe0.8O3−δ(LSCF)–Ce0.9Gd0.1O1.95(GDC) nanocomposite with different fractions of GDC obtained by physical mixing of combustion synthesized nanopowders. No secondary phases were observed upon sintering at 1100 °C for 2 h affirming the chemical compatibility between LSCF and GDC. The composites with relatively high GDC% have higher density as a consequence of rapid grain growth and less conductivity. The nanocomposite with 50% of GDC showed electric conductivity of 30 Scm−1 at 500 °C and low area specific resistance of 106 Ω cm2 with 10 μs relaxation time at 200 °C.  相似文献   

11.
《Solid State Ionics》2006,177(26-32):2313-2316
The operation of langasite (La3Ga5SiO14) resonators as sensors at elevated temperature and controlled atmospheres is examined. This paper focuses on mapping the regimes of gas-insensitive operation of uncoated langasite resonators and the correlation to langasite's defect chemistry for temperatures up to 1000 °C. As a measure of sensitivity, the fundamental resonant mode at 5 MHz is estimated to be determined to within ± 4 Hz by network analysis for resonators operated in air at temperatures below 1000 °C. The calculated frequency shift induced by redox-related reactions in langasite only exceeds the limit of ± 4 Hz below pO2  10 17 bar at 1000 °C, below 10 24 bar at 800 °C and below 10 36 bar at 600 °C. Water vapor is found to shift the resonance frequency at higher oxygen partial pressures. In the hydrogen-containing atmospheres applied here, langasite can be regarded as a stable resonator material above oxygen partial pressures of about 10 13 and 10 20 bar at 800 and 600 °C, respectively.  相似文献   

12.
《Solid State Ionics》2006,177(37-38):3303-3307
Using Na2CO3 and Me(NO3)2 (Me = Ni, Co and Mn) as starting materials, the precursor of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium rechargeable batteries has been synthesized by carbonate co-precipitation. The precursor was mixed with Li2CO3 and heated in air. Thermogravimetric analysis (TG–DTA), laser particle size analysis, X-ray diffraction (XRD) and electron scanning microscopy (SEM) were employed to study the reaction process and the structures of the powders. The D50 of precursor was 2.509 μm and the distribution was relatively narrow. The optimum calcination temperature was 850–900 °C. Galvanostatic cell cycling and cyclic voltammetry were also used to evaluate the electrochemical properties. The initial discharge capacity for the powders calcined at 900 °C was about 180 mA h/g at room temperature when cycled between 2.8 and 4.3 V at 0.2 C rate.  相似文献   

13.
Manganese-doped Zn2SiO4 phosphors with different crystal structures and morphologies were synthesized by glycothermal reactions of zinc acetate dihydrate and manganese(II) acetate tetrahydrate with tetraethyl orthosilicate in various glycols at 315 °C. The reactions in 1,3-propanediol and 1,4-butanediol yielded α-Zn2SiO4:Mn2+, whereas the reactions in ethylene glycol and 1,5-pentanediol yielded β-Zn2SiO4:Mn2+ and ZnO, respectively. The samples obtained in 1,4-butanediol and 1,3-propanediol emitted green light (522 nm), and the sample prepared in 1,4-butanediol showed a higher emission intensity. The photoluminescence intensity of the Zn1.96Mn0.04SiO4 phosphor prepared by a glycothermal reaction in 1,4-butanediol and subsequently calcined at 1100 °C was twice as high as that of the sample synthesized by a conventional solid-state reaction. The high emission efficiency was obtained because the highly homogeneous distribution of Mn2+ in the α-Zn2SiO4 host synthesized by the glycothermal reaction was maintained during calcination treatment in air.  相似文献   

14.
Powders of BaYxCe1 ? xO3 ? δ (x = 0, 0.1 and 0.15) with specific surface area of 6–8 m2g? 1 (BET equivalent particle size of 130–160 nm) were prepared by a modified solid-state route using nanocrystalline BaCO3 and CeO2 raw materials. These powders showed excellent densification at relatively low temperatures. Dense (96–97% relative density) ceramics with submicron grain size (0–4–0.6 µm) were obtained after sintering at 1250–1280 °C. Ceramics sintered at 1450 °C revealed only a moderate grain growth (grain size ≤ 2 µm), uniform microstructure and very high density (≥ 98%). The total conductivity of the submicron ceramics at 600 °C was comparable with the reference values reported in the literature, meaning that the high number of grain boundaries was not a limiting factor. On lowering temperature, the contribution of the blocking grain boundaries becomes progressively more important and the conductivity decreases in comparison to coarse-grained ceramics. Microscopic conductivities of grain interior and grain boundary are the same irrespective of grain size meaning that the different macroscopic behaviour is only determined by a geometric factor (a trivial size effect).  相似文献   

15.
《Solid State Ionics》2006,177(13-14):1199-1204
Perovskite oxides of the composition BaxSr1−xCo1−yFeyO3−δ(BSCF) were synthesized via a modified Pechini method and characterized by X-ray diffraction, dilatometry and thermogravimetry. Investigations revealed that single-phase perovskites with cubic structure can be obtained for x  0.6 and 0.2  y  1.0. The as-synthesized BSCF powders can be sintered in several hours to nearly full density at temperatures of over 1180 °C. Thermal expansion curves of dense BSCF samples show nonlinear behavior with sudden increase in thermal expansion rate between about 500 °C and 650 °C, due mainly to the loss of lattice oxygen caused by the reduction of Co4+ and Fe4+ to lower valence states. Thermal expansion coefficients (TECs) of BSCF were measured to be 19.2–22.9 × 10 6 K 1 between 25 °C and 850 °C. Investigations showed further that Ba0.5Sr0.5Co0.8Fe0.2O3−δ is chemically compatible with 8YSZ and 20GDC for temperatures up to 800 °C, above which severe reactions were detected. After being heat-treated with 8YSZ or 20GDC for 5 h above 1000 °C, Ba0.5Sr0.5Co0.8Fe0.2O3−δ was completely converted to phases like SrCoO3−δ, BaCeO3, BaZrO3, etc.  相似文献   

16.
This paper describes an investigation of the crystalline morphology and photoluminescent properties of YInGe2O7 powders doped with different Eu3+ concentrations using microwave assisted sintering and conventional sintering. X-ray powder diffraction analysis confirmed the formation of monoclinic YInGe2O7 structure as YInGe2O7:Eu3+ powders were sintered at 1200 °C in microwave furnace for 1 h, and the raw material phase of Y2O3 was observed when Eu3+ concentration was below 30 mol%. Scanning electron microscopy showed microwave assisted sintering results in smaller particle size and more uniform grain size distribution. In the photoluminescent (PL) studies, the concentration quenching effect was observed under the excitation at 393 nm, but not under the excitation at CTS band. The 5D07F2 transition (620 nm), exhibits a non-exponential decay behavior as YInGe2O7:Eu3+ powders were sintered by microwave with the Eu3+ concentration higher than 50 mol%.  相似文献   

17.
We present the synthesis of M-type strontium hexaferrite by sonochemistry and annealing. The effects of the sonication time and thermal energy on the crystal structure and magnetic properties of the obtained powders are presented. Strontium hexagonal ferrite (SrFe12O19) was successfully prepared by the ultrasonic cavitation (sonochemistry) of a complexed polyol solution of metallic acetates and diethylene glycol. The obtained materials were subsequently annealed at temperatures from 300 to 900 °C. X-ray diffraction analysis shows that the sonochemical process yields an amorphous phase containing Fe3+, Fe2+ and Sr2+ ions. This amorphous phase transforms into an intermediate phase of maghemite (γ-Fe2O3) at 300 °C. At 500 °C, the intermediate species is converted to hematite (α-Fe2O3) by a topotactic transition. The final product of strontium hexaferrite (SrFe12O19) is generated at 800 °C. The obtained strontium hexaferrite shows a magnetization of 62.3 emu/g, which is consistent with pure hexaferrite obtained by other methods, and a coercivity of 6.25 kOe, which is higher than expected for this hexaferrite. The powder morphology is composed of aggregates of rounded particles with an average particle size of 60 nm.  相似文献   

18.
Luminescence investigations of Mn-activated ZnAl2O4 phosphors prepared by using sol–gel method were described. The phosphor was characterized by X-ray diffraction (XRD) and electronic paramagnetic resonance (EPR). The EPR spectra of the samples suggested that Mn ions possessed homogeneous distribution in ZnAl2O4 phosphors. Photoluminescence studies of the prepared phosphors showed green and red emissions. The red emission became weaker, and vanished at last with sintering temperature increasing from 600 to 900 °C in reducing atmosphere, while the intensity of green emission peak increased. Furthermore, when the phosphor was sintered at 900 °C in air, the intensity of red and green emissions decreased, but the value of intensity ratio increased. It suggested that the green emission resulted from Mn2+ and the red emission resulted from Mn4+.  相似文献   

19.
Metal-supported solid oxide fuel cells (SOFCs) are promising due to their good mechanical and thermal properties. Stainless steels are often used as a supporting metal. In this study, the possible use of Ni as a supporting metal was tested. Ni is also a good model of supporting metal due to its lack of Cr which poisons Ni anode.YSZ electrolyte and Ni-YSZ anode were coated on a porous Ni support to fabricate Ni-supported SOFC. A porous Ni support in thick-film form (t ~ 150 µm) was prepared by the mold casting of Ni powders. An anode and an electrolyte layer were sequentially coated on the Ni support using screen printing and tape casting methods, respectively. The Ni-supported cell (t ~ 200 µm) was sintered at 1400 °C in a reducing atmosphere and the performance was evaluated at 800 °C with a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. The unit cell showed an open circuit voltage (OCV) of 0.96 V and a peak power density of 470 mW/cm2 at 800 °C.  相似文献   

20.
《Solid State Ionics》2006,177(3-4):275-280
Lithium niobate powders from the raw powders of Li2CO3 and Nb2O5 are directly synthesized by a combustion method with urea as fuel. The synthesis parameters (e. g., the calcination temperature, calcination time, and urea-to-(Li2CO3 + Nb2O5) quantity ratio) are studied to reveal the optimized synthesis conditions for preparing high-quality lithium niobate powders. In our present work, it is found that a urea-to-(Li2CO3 + Nb2O5) ratio close to 3, calcination temperature at 550∼600 °C and reaction time around 2.5 h may lead to high-quality lithium niobate powders. The microstructure of synthesized powders is further studied; a possible mechanism of the involved reactions is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号