首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Markus Lazar 《哲学杂志》2019,99(13):1563-1601
In this paper, we develop a non-singular continuum theory of point defects based on a second strain gradient elasticity theory, the so-called gradient elasticity of bi-Helmholtz type. Such a generalised continuum theory possesses a weak nonlocal character with two internal material lengths and provides a mechanics of defects without singularities. Gradient elasticity of bi-Helmholtz type gives a natural and physical regularisation of the classical singularities of defects, based on higher order partial differential equations. Point defects embedded in an isotropic solid are considered as eigenstrain problem in gradient elasticity of bi-Helmholtz type. Singularity-free fields of point defects are presented. The displacement field as well as the first, the second and the third gradients of the displacement are derived and it is shown that the classical singularities are regularised in this framework. This model delivers non-singular expressions for the displacement field, the first displacement gradient and the second displacement gradient. Moreover, the plastic distortion (eigendistortion) and the gradient of the plastic distortion of a dilatation centre are also non-singular and are given in terms of a form factor (shape function) of a point defect. Singularity-free expressions for the interaction energy and the interaction force between two dilatation centres and for the interaction energy and the interaction force of a dilatation centre in the stress field of an edge dislocation are given. The results are applied to calculate the finite self-energy of a dilatation centre.  相似文献   

2.
The present study proposes an identification method for highly nonlinear mechanical systems that does not require a priori knowledge of the underlying nonlinearities to reconstruct arbitrary restoring force surfaces between degrees of freedom. This approach is based on the master–slave synchronisation between a dynamic model of the system as the slave and the real system as the master using measurements of the latter. As the model synchronises to the measurements, it becomes an observer of the real system. The optimal observer algorithm in a least-squares sense is given by the Kalman filter. Using the well-known state augmentation technique, the Kalman filter can be turned into a dual state and parameter estimator to identify parameters of a priori characterised nonlinearities. The paper proposes an extension of this technique towards nonparametric identification. A general system model is introduced by describing the restoring forces as bilateral spring-dampers with time-variant coefficients, which are estimated as augmented states. The estimation procedure is followed by an a posteriori statistical analysis to reconstruct noise-free restoring force characteristics using the estimated states and their estimated variances. Observability is provided using only one measured mechanical quantity per degree of freedom, which makes this approach less demanding in the number of necessary measurement signals compared with truly nonparametric solutions, which typically require displacement, velocity and acceleration signals. Additionally, due to the statistical rigour of the procedure, it successfully addresses signals corrupted by significant measurement noise. In the present paper, the method is described in detail, which is followed by numerical examples of one degree of freedom (1DoF) and 2DoF mechanical systems with strong nonlinearities of vibro-impact type to demonstrate the effectiveness of the proposed technique.  相似文献   

3.
刘普生  程科  吕百达 《物理学报》2008,57(3):1683-1688
推导出高斯背景的离轴位相奇点光束的半屏衍射解析公式,详细研究了离轴位相奇点的动态传输.结果表明,半屏衍射,偏移量和传输距离都会影响位相奇点的传输行为和衍射场位相奇点的分布.改变偏移量和传输距离,衍射场伴随有位相奇点的产生,移动和湮没. 关键词: 奇点光学 离轴位相奇点光束 半屏衍射 光涡漩  相似文献   

4.
用Zernike多项式实现光机分析的技术方法   总被引:2,自引:1,他引:2  
由于光学软件不能直接利用有限元分析的结果,而Zernike多项式的各项与光学像差有对应关系,因此常用Zernike多项式作为光机接口。针对目前常用轴向位移作为拟合量描述拟合面形的不足,给出了几种常用的表面位移校正方法并说明了其优缺点。用具体实例比较各校正位移,并对其进行Zernike多项式拟合,从拟合系数的差异可以看出,曲率比较大的表面必须采用校正位移进行拟合。最后指出:在不知道初始表面方程的情况下,轴向和法向校正位移均采用从初始表面出发的方法,如果已知初始表面方程,则轴向校正位移采用从变形表面出发的方法,法向校正位移仍采用从初始表面点出发进行计算。  相似文献   

5.
This paper reports the three-dimensional (3D) generalization of our previous 2D higher-order matched interface and boundary (MIB) method for solving elliptic equations with discontinuous coefficients and non-smooth interfaces. New MIB algorithms that make use of two sets of interface jump conditions are proposed to remove the critical acute angle constraint of our earlier MIB scheme for treating interfaces with sharp geometric singularities, such as sharp edges, sharp wedges and sharp tips. The resulting 3D MIB schemes are of second-order accuracy for arbitrarily complex interfaces with sharp geometric singularities, of fourth-order accuracy for complex interfaces with moderate geometric singularities, and of sixth-order accuracy for curved smooth interfaces. A systematical procedure is introduced to make the MIB matrix optimally symmetric and banded by appropriately choosing auxiliary grid points. Consequently, the new MIB linear algebraic equations can be solved with fewer number of iterations. The proposed MIB method makes use of Cartesian grids, standard finite difference schemes, lowest order interface jump conditions and fictitious values. The interface jump conditions are enforced at each intersecting point of the interface and mesh lines to overcome the staircase phenomena in finite difference approximation. While a pair of fictitious values are determined along a mesh at a time, an iterative procedure is proposed to determine all the required fictitious values for higher-order schemes by repeatedly using the lowest order jump conditions. A variety of MIB techniques are developed to overcome geometric constraints. The essential strategy of the MIB method is to locally reduce a 2D or a 3D interface problem into 1D-like ones. The proposed MIB method is extensively validated in terms of the order of accuracy, the speed of convergence, the number of iterations and CPU time. Numerical experiments are carried out to complex interfaces, including the molecular surfaces of a protein, a missile interface, and van der Waals surfaces of intersecting spheres.  相似文献   

6.
This paper presents two types of finite impulse response (FIR) filters to reconstruct dynamic displacement induced by structural vibration from measured acceleration. The governing equation for the reconstruction is derived by taking the variation of a minimization problem, which defines an inverse problem on displacement. A regularization function for overcoming the ill-posedness of the inverse problem is included in the minimization problem. The governing equation of the inverse problem becomes the same type of differential equation as that of a beam on an elastic foundation. The conventional FIR (CFIR) filter directly approximates the transfer function of the governing equation, while the FEM-based FIR (FFIR) filter is formulated by the discretization of the minimization problem with the finite element method. For the finite element discretization, the Hermitian shape function is utilized. The proposed FFIR filter is capable of reconstructing displacement and velocity simultaneously. The fundamental characteristics of the proposed filters are investigated in the frequency domain using the transfer and accuracy functions. It is shown that the proposed FIR filters suppress low frequency noise components in measured accelerations effectively, and reconstruct physically meaningful displacement accurately. The validity of the proposed filters is demonstrated through a numerical simulation study, a field experiment and an evaluation of flutter derivatives using measurements taken from a wind tunnel test.  相似文献   

7.
We consider structure preserving numerical schemes for the Ostrovsky equation, which describes gravity waves under the influence of Coriolis force. This equation has two associated invariants: an energy function and the L2 norm. It is widely accepted that structure preserving methods such as invariants-preserving and multi-symplectic integrators generally yield qualitatively better numerical results. In this paper we propose five geometric integrators for this equation: energy-preserving and norm-preserving finite difference and Galerkin schemes, and a multi-symplectic integrator based on a newly found multi-symplectic formulation. A numerical comparison of these schemes is provided, which indicates that the energy-preserving finite difference schemes are more advantageous than the other schemes.  相似文献   

8.
The Sasakawa theory of scattering is phrased in the form of a Fredhohn reduction technique for integral equations possessing a fixed-point singularity in their kernels. This permits the generalization of this theory to a large variety of scattering integral equations. Some specific applications include the two-particle off-shell and multichannel scattering problems. In the first instance a rank-three approximation to the fully off-shell transition matrix is derived which is exact on and half-off shell, satisfies off-shell unitarity, and which possesses no unphysical singularities. In the second problem it is shown how the method leads to the generation of a unitary approximation to the multichannel amplitudes.  相似文献   

9.
The problem on integrability of the equations of motion of a material point on an n-dimensional Euclidean torus under the action of a force field with the potential energy having singularities at a finite number of points is considered. It is assumed that these singularities contain logarithmic coefficients and, consequently, have a more general form in comparison with power features. The potentials having power-type singularities were considered previously by V.V. Kozlov and D.V. Treshchev. In this work, it is proved that the equations of motion in the problem under consideration admit no nontrivial momentum-polynomial first integral with integrable coefficients on this torus.  相似文献   

10.
《Nuclear Physics B》2005,709(3):465-490
We solve the Riemann–Hilbert problem on the sphere topology for three singularities of finite strength and a fourth one infinitesimal, by determining perturbatively the Poincaré accessory parameters. In this way we compute the semiclassical four point vertex function with three finite charges and a fourth infinitesimal. Some of the results are extended to the case of n finite charges and m infinitesimal. With the same technique we compute the exact Green function on the sphere with three finite singularities. Turning to the full quantum problem we address the calculation of the quantum determinant on the background of three finite charges and the further perturbative corrections. The zeta function technique provides a theory which is not invariant under local conformal transformations. Instead by employing a regularization suggested in the case of the pseudosphere by Zamolodchikov and Zamolodchikov we obtain the correct quantum conformal dimensions from the one loop calculation and we show explicitly that the two loop corrections do not change such dimensions. We expect such a result to hold to all order perturbation theory.  相似文献   

11.
Analytical expression for the propagation of nonparaxial cosh-Gaussian (ChG) beams diffracted by a rectangular aperture is derived based on the vector Rayleigh-Sommerfeld diffraction integrals and expansion of the aperture window function into a finite sum of complex Gaussian functions, and used to study the phase singularities of nonparaxial diffracted ChG vortex beams. The pair creation, annihilation, motion of phase singularities in the diffracted field and the dependence of position and number of phase singularities on the aperture and beam parameters, as well as on the beam nonparaxiality are illustrated by numerical examples.  相似文献   

12.
The continuous element method is presented in the context of the harmonic response of beam assemblies. A general formulation is described from the displacement solution of the elementary problem. A direct computation of elementary dynamic stiffness matrices is presented. In the present formulation, distributed loadings are taken into account. In the case of more complex geometries for which many coupling phenomena occur, an explicit formulation is no more conceivable. In this case, a numerical approach is presented. This approach allows an algorithmic computation of exact dynamic stiffness matrices. This method, called “Numerical Continuous Element”, allows one to consider the coupled vibrations of curved beams and those of helical beams. The validation of this numerical method is achieved by comparisons with the harmonic response of various beams obtained by a finite element approach. Finally, a comparison between eigenfrequencies obtained experimentally and numerically for a straight beam and a helical beam has been made to evaluate the performances of the method.  相似文献   

13.
斜光束对校正滤光片匹配准确度的影响   总被引:1,自引:1,他引:0  
高世芝  金尚忠  袁琨 《光子学报》2013,42(2):135-138
光电积分式的测色仪器中,光探测器的响应必须满足卢瑟条件.这一般是通过精确的匹配校正滤光片来实现的,匹配的准确度与入射光束在校正滤光片中的实际光程有关.由于测量条件的影响,入射光束不可避免地包含各个方向的入射光线,斜光束的存在会使理论计算出的匹配准确度降低.本文采用总误差面积比例最小法来评价校正滤光片的匹配准确度,阐述了校正滤光片匹配的理论依据,验证了斜光束光谱透射对于整个校正滤光片匹配准确度的影响,并提出了考虑到斜光束影响的校正滤光片厚度的修正公式.以"Y"滤光片的匹配为例,证明了修正后的公式对提高匹配准确度的意义.  相似文献   

14.
In this article, we use a general method for the analysis of finite difference schemes to investigate lattice Boltzmann algorithms for Navier–Stokes problems with Dirichlet boundary conditions. Several link based boundary conditions for commonly used lattice Boltzmann BGK models are considered. With our method, the accuracy of the algorithms can be exactly predicted. Moreover, the analytical results can be used to construct new algorithms which is demonstrated with a corrected bounce back rule that requires only local evaluations but still yields second order accuracy for the velocity. The analysis is applicable to general geometries and instationary flows  相似文献   

15.
This paper presents an exact, wave-based approach for determining Bloch waves in two-dimensional periodic lattices. This is in contrast to existing methods which employ approximate approaches (e.g., finite difference, Ritz, finite element, or plane wave expansion methods) to compute Bloch waves in general two-dimensional lattices. The analysis combines the recently introduced wave-based vibration analysis technique with specialized Bloch boundary conditions developed herein. Timoshenko beams with axial extension are used in modeling the lattice members. The Bloch boundary conditions incorporate a propagation constant capturing Bloch wave propagation in a single direction, but applied to all wave directions propagating in the lattice members. This results in a unique and properly posed Bloch analysis. Results are generated for the simple problem of a periodic bi-material beam, and then for the more complex examples of square, diamond, and hexagonal honeycomb lattices. The bi-material beam clearly introduces the concepts, but also allows the Bloch wave mode to be explored using insight from the technique. The square, diamond, and hexagonal honeycomb lattices illustrate application of the developed technique to two-dimensional periodic lattices, and allow comparison to a finite element approach. Differences are noted in the predicted dispersion curves, and therefore band gaps, which are attributed to the exact procedure more-faithfully modeling the finite nature of lattice connection points. The exact method also differs from approximate methods in that the same number of solution degrees of freedom is needed to resolve low frequency, and arbitrarily high frequency, dispersion branches. These advantageous features may make the method attractive to researchers studying dispersion characteristics, band gap behavior, and energy propagation in two-dimensional periodic lattices.  相似文献   

16.
In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.  相似文献   

17.
A model of transverse piano string vibration, second order in time, which models frequency-dependent loss and dispersion effects is presented here. This model has many desirable properties, in particular that it can be written as a well-posed initial-boundary value problem (permitting stable finite difference schemes) and that it may be directly related to a digital waveguide model, a digital filter-based algorithm which can be used for musical sound synthesis. Techniques for the extraction of model parameters from experimental data over the full range of the grand piano are discussed, as is the link between the model parameters and the filter responses in a digital waveguide. Simulations are performed. Finally, the waveguide model is extended to the case of several coupled strings.  相似文献   

18.
This paper focuses on the inverse problem regarding force localization in the case of impacts not concentrated at a point but which occur on elastic beams. Following the identification approach proposed to solve this problem and which is based on the reciprocity theorem, the impact location characteristics were determined by using particle swarm optimization algorithm. To eliminate numerical trouble due to the trivial solutions appearing in this formulation, the fitness function was customized by introducing a set of weighting coefficients. Four different formulations of the fitness function were considered and their performances with regards to the number of sensors used and their positions were analyzed. They enabled a selection of the best combination of weighting coefficients to be used in the context of an impact force localization process based on the particle swarm optimization technique. Three sensors were found to be required and comparison with a genetic algorithm has revealed the effectiveness of the proposed method in terms of accuracy and computational time.  相似文献   

19.
A new shock-detecting sensor for properly switching between a second-order and a higher-order filter is developed and assessed. The sensor is designed based on an order analysis. The nonlinear filter with the proposed sensor ensures damping of the high-frequency waves in smooth regions and at the same time removes the Gibbs oscillations around the discontinuities when using high-order compact finite difference schemes. In addition, a suitable scaling is proposed to have dissipation proportional to the shock strength and also to minimize the effects of the second-order filter on the very small scales. Several numerical experiments are carried out and the accuracy of the nonlinear filter with the proposed sensor is examined. In addition, some comparisons with other filters and sensors are made.  相似文献   

20.
A simulator for self-organized lightwave network (SOLNET) is developed. The simulator is based on the finite difference time domain method. SOLNET enables us to construct self-aligned coupling waveguides between misaligned micro/nanometer-scale optical devices by self-focusing, which arises from an increase in refractive index induced by write beams in photo-refractive materials. The SOLNET simulator reveals that an L-shaped nanometer-scale optical waveguide of SOLNET is grown from a 0.5-μm-wide optical waveguide when write beams are introduced from the optical waveguide into photo-refractive materials, where a wavelength filter is embedded. The SOLNET simulator also reproduces coupling path construction between a 2-μm-wide optical waveguide and a 0.5-μm-wide optical waveguide having a wavelength filter on the core edge. The optical waveguides are placed with misalignment of 0.5-μm offset. By introducing write beams from the 2-μm-wide optical waveguide, the incident write beams and reflected write beams from the wavelength filter merge into one optical waveguide in the photo-refractive materials, constructing a self-aligned coupling waveguide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号