首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhao X  Liang D  Liu S  Sun C  Cao R  Gao C  Ren Y  Su Z 《Inorganic chemistry》2008,47(16):7133-7138
The Dawson anion P 2W 18O 62 (6-) has been used as a noncoordinating polyoxoanion template for the construction of two metal-organic frameworks, namely, [M 2(bpy) 3(H 2O) 2(ox)][P 2W 18O 62]2(H 2-bpy). nH 2O (M = Co(II), n = 3 ( 1); M = Ni(II), n = 2 ( 2)) (bpy = 4,4'-bipyridine; ox = C 2O 4 (2-)). Single-crystal X-ray analysis reveals that both of the structures exhibit 3D host frameworks constructed from the oxalate-bridged binuclear superoctahedron secondary building units (SBUs) and bpy linkers and the voids of which are occupied by Dawson anions, guest bpy, and water molecules. Magnetic studies reveal that there are antiferromagnetic exchange interactions among the transition-metal centers in compounds 1 and 2. Furthermore, a compound 1-modified carbon paste electrode ( 1-CPE) displays good electrocatalytic activity toward the reduction of nitrite.  相似文献   

2.
A modified compositional diagram for the reactions of Ni(C(2)H(3)O(2))(2).4H(2)O with UO(2)(C(2)H(3)O(2))(2).2H(2)O and HF in aqueous media under mild hydrothermal conditions (200 degrees C) has been completed to yield three Ni(II)/U(IV) fluorides, Ni(H(2)O)(4)UF(6).1.5H(2)O (1), Ni(2)(H(2)O)(6)U(3)F(16).3H(2)O (2), and Ni(H(2)O)(2)UF(6)(H(2)O) (3). The structure of 1 consists of one-dimensional columns constructed from two parallel chains of edge-sharing dodecahedral [UF(8)] units. The sides of the columns are terminated by octahedral Ni(II) units that occur as cis-[Ni(H(2)O)(4)F(2)] polyhedra. In contrast, the crystal structure of 2 reveals a two-dimensional Ni(II)/U(IV) architecture built from edge-sharing tricapped trigonal prismatic [UF(9)] units. The top and bottom of the sheets are capped by fac-[Ni(H(2)O)(3)F(3)] octahedra. The structure of 3 is formed from [UF(8)(H(2)O)] tricapped trigonal prisms that edge share with one another to form one-dimensional chains. These chains are then joined together into a three-dimensional network by corner sharing with trans-[Ni(H(2)O)(2)F(4)] octahedra. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 14.3383(8) A, b = 15.6867(8) A, c = 8.0282(4) A, Z = 8; 2, hexagonal, space group P6(3)/mmc, a = 7.9863(5) A, c = 16.566(1) A, Z = 2; 3, monoclinic, space group C2/c, a = 12.059(1) A, b = 6.8895(6) A, c = 7.9351(7) A, beta = 92.833(2) degrees, Z = 4.  相似文献   

3.
Two novel Zn(II) metal-organic frameworks (MOFs) constructed by trinuclear-triangular and paddle-wheel units, namely {[Zn(5)(dmtrz)(3)(IPA)(3)(OH)]·DMF·H(2)O}(n) (MAC-4, Hdmtrz = 3,5-dimethyl-1H-1,2,4-triazole, H(2)IPA = isophthalic acid, DMF = dimethyl formamide) and {[Zn(5)(dmtrz)(3)(OH-IPA)(3)(OH)]·DMF·5H(2)O}(n) (MAC-4-OH, OH-H(2)IPA = 5-hydroxyisophthalic acid), were solvothermally synthesized. Single-crystal analyses reveal that MAC-4-OH is an iso-reticular framework of MAC-4 with channels functionalized by hydroxyl groups. Gas adsorption reveals that MAC-4-OH shows a significant enhancement for CO(2) uptake compared with that of MAC-4 due to the existence of electrostatic attractive interactions, though its surface area is lower than that of MAC-4.  相似文献   

4.
Metal-organic frameworks(MOFs)constructed from conjugated organic ligands are candidates for hybrid photoactive materials with potential applications.Compared to that from the ligands only,the intensity and wavelength of the luminescence could be tuned after they were incorporated in extended framework.In this report,by using an organic ligand with azolate moiety,benzo-bis(imidazole)(H2BBI),we synthesized two new MOF structures.Framework 1([Co(H2BBI)(DMSO)2Cl2]n,DMSO=dimethyl sulfoxide),constructed from tetrahedral Co(II)and H2BBI,exhibits zigzag 1D structure.Meanwhile,framework 2([Cu2(H2BBI)3(DMSO)6(NO3)4]n),a layered structure with hcb topology,was assembled from tetragonal pyramidal Cu(II)and H2BBI.Furthermore,2 exhibits strong luminescence emission(ex=280 nm).A blue shift of 40 nm(from 359 nm to 319 nm)was observed in framework 2 compared to the free ligand,which could be explained by the ligand-to-metal charge transfer in the network.  相似文献   

5.
The first crystal structure of uranyl citrate is reported, as well as that of uranyl sodium tricarballylate; both compounds are polymeric, with all acid groups coordinated, but they differ strongly in their coordination modes; the resulting assembly architecture is either three-dimensional with [(UO2)2(Hcit)2]2- metallacycle subunits with citrate or two-dimensional with tricarballylate.  相似文献   

6.
Using the principle of crystal engineering, four novel metal-organic coordination polymers, {[Cd1(nic)2(H2O)]2[Cd2(nic)2(H2O)2]}n (1), [Cd2(fma)2(phen)2]n (2), [Cd(fma)(bipy)(H2O)]n (3) and [Zn(mal)(bipy)·3H2O]n (4) (nic=nicotinate, fma=fumarate, mal=malate, phen=phenanthroline, bipy=2,2′-bipyridine) have been synthesized by hydrothermal reaction of M(CH3COO)2·2H2O (M=Zn, Cd) with nicotinic acid, fumaric acid and cooperative L (L=phen, bipy), respectively. X-ray analysis reveals that complex 1 possesses an unprecedented two-dimensional topology structure constructed from three-ply-like layers, complex 2 is an infinite 2D undulating network, complex 3 is a 1D zigzag chain and complex 4 belongs to a 1D chain. The results indicate a transformation of fumarate into malate during the course of hydrothermal treatment of complex 4. The photophysical properties have been investigated with luminescent excitation and emission spectra.  相似文献   

7.
A new two-dimensional (2d) iron phosphate, (C2N2H10)Fe2O(PO4)2, has been synthesized under hydrothermal conditions in the system of FeCl3-H3PO4-C2N2H8-H2O. The crystal data is: space group P21/c, a=10.670(1) Å, b=10.897(1) Å, c=9.918(1) Å, β=105.632(1)°, Z=4. The layered structure consists of double sheet layers, of composition Fe2O(PO4)2, built from FeO5 trigonal bipyramids and PO4 tetrahedra. The amine holds the layers together via H-bonding. The study of the magnetic properties reveals two magnetic transitions at 160 and 30 K with spin-glass-like behavior below 160 K. By varying the hydrothermal conditions, three other iron phosphates were synthesized: the one-dimensional (1d) (C2N2H10)Fe(HPO4)2(OH)·H2O, the 2d (C2N2H10)Fe2(PO4)2(OH)2, and the three-dimensional (3d) (C2N2H10)2Fe4O(PO4)4·H2O. The 1d compound can be used as the starting reagent in the synthesis of both the 2d compound and the 3d lipscombite Fe3(PO4)2(OH)2 due to the similar building blocks in their structures. In the 3d phosphate (C2N2H10)2Fe4O(PO4)4·H2O, manganese can substitute for half of the iron atoms. Magnetic study shows ordering transitions at about 30 K, however, manganese substitution depresses the magnetic ordering temperature.  相似文献   

8.
Sun Q  Cheng AL  Wang YQ  Ma Y  Gao EQ 《Inorganic chemistry》2011,50(17):8144-8152
Three isomorphous metal-organic frameworks of formula [M(ppdc)(H(2)O)(2)](n) [M = Mn(II), Fe(II), and Co(II)] were synthesized from sodium p-phenylenediacrylic (Na(2)ppdc). Crystallographic studies revealed that the compounds are layer-pillared 3D frameworks in which the square-grid M(II) layers with single carboxylate bridges are interlinked by long organic spacers with large interlayer separations of about 13 ?. Magnetic investigations indicated that they all display intralayer antiferromagnetic interactions through the carboxylate bridges in the unusual skew-skew coordination mode but the bulk behaviors are quite different. The Co(II) compound, like most compounds containing similar M-O-C-O-M layers, shows no 3D magnetic ordering down to 2 K, while the Mn(II) and Fe(II) compounds exhibit spin-canted ordering, behaving as a weak ferromagnet (T(C) = 3.8 K) and a metamagnet (T(N) = 3.8 K, H(c) = 650 Oe), respectively. Spin-canted ordering is still a rarity in this series of materials. Magnetostructural comparisons with analogous compounds indicate that the occurrence of spin-canted ordering can be related to the uncommon skew-skew and anti-anti coordination modes of carboxylate bridges, which induce stronger antiferromagnetic interactions than the common syn-anti mode.  相似文献   

9.
Six new complexes: [Ln2(pzda)3(H2O)2] · 2.5H2O (Ln = Nd, (1); Eu, (2)), [Co(pzda) (bpe)] · 0.125(bpe) · 1.75H2O (3), [Mn(pzda)(H2O)1.5] (4), [Co2(pzda)2(bpe)(H2O)4] · 0.5(CH3OH) · H2O (5) and [Co(pzda)(2,2′-bpy)(H2O)] · 0.5H2O (6) (H2pzda = pyrazine-2,6-dicarboxylic acid, bpe = 1,2-bis(4-pyridyl)ethane, 2,2′-bpy = 2,2′-bipyridine) were obtained from metal salts and H2pzda under hydro(solvo)thermal conditions. The single crystal X-ray structural analysis reveals that the title complexes have different structures, ranging from zero- to three- dimensions, which are mainly due to the different metal ions, and especially the coordination modes of the pzda ligands. Complexes 1 and 2 have 3D metal-organic frameworks containing a 1D tri-strand array, in which the pzda ligand adopts a pentadentate mode to link lanthanide ions. Complex 3 has a 2D metal-organic framework, in which the pzda ligand acts in a tetradentate mode to connect Co(II) ions into 1D chains, which are further connected by bpe spacers into a 2D framework. While in 4, both of the two carboxylate groups of the pzda ligand adopt μ2-O bridging modes to link Mn(II) ions into a 1D coordination polymer, which is further assembled into a 2D supramolecular network containing double-stranded hydrogen-bonded helical chains. In both 5 and 6, the pzda ligand binds metal ions as a tridentate ligand (ONO mode) to form zero dimensional structures. Complex 5 is a binuclear molecule, while 6 is a mononuclear complex, which can be attributed to the bridging ligand bpe for 5 and the terminal auxiliary ligand 2,2′-bpy for 6.  相似文献   

10.
Shi D  Ren Y  Jiang H  Cai B  Lu J 《Inorganic chemistry》2012,51(12):6498-6506
A tritopic carboxylate ligand, tris(4'-carboxybiphenyl)amine (L-H(3)), has been synthesized and applied in the construction of microporous metal-organic frameworks (MOFs). Two novel metal-organic frameworks (MOFs), {[Zn(2)(L)(OH)]·2DMF·H(2)O}(∞) (1) and {[Cu(L-H)(DMA)]·DMA·2H(2)O}(∞) (2), have been constructed out of L-H(3), Zn(2+), and Cu(2+), respectively. 1 has a 2-fold interpenetrating three-dimensional framework formed by L connectors and the [Zn(2)(CO(2))(3)] secondary building units (SBUs). As for 1, it is worth pointing out that one μ(2)-OH group links two Zn atoms between two neighboring SBUs to produce interesting Zn-O-Zn zigzag chains in the structure. 2 has a two-dimensional grid sheet formed by L-H connectors and the typical paddle-wheel [Cu(2)(CO(2))(4)] SBUs. Two-dimensional (2D) sheets nest with each other, which finally forms a three-dimensional (3D) nested framework. Two MOFs are characterized by infrared (IR) spectroscopy, thermogravimetry, single-crystal and elemental analyses, and powder X-ray diffraction methods. Framework 1' exhibits high permanent porosity (Langmuir surface area = 848 m(2)/g), high thermal stability (up to 450 °C), highly active properties for Friedel-Crafts alkylation reaction, as well as the potential application for the CO(2) gas storage and luminescent material. The catalytic results reveal that 2' is indeed an efficient heterogeneous catalyst for olefin epoxidation reactions.  相似文献   

11.
A novel class of heterometallic metal-organic frameworks (MOFs) has been synthesized and characterized. The MOFs rely on the use of tris(dipyrrinato) coordination complexes as the bridging structure and silver(I) ions as the linking unit. The building blocks and resulting MOFs have been structurally characterized by using single-crystal X-ray diffraction. The modular nature of this approach is demonstrated by the use of both iron(III) and cobalt(III) complexes. The MOFs have strong electronic absorption features originating from the metal-dipyrrin chromophore and have continuous channels throughout the lattice that are occupied by ordered and disordered solvent molecules.  相似文献   

12.
The role of pH in the formation of metal-organic frameworks (MOFs) has been studied for a series of magnesium-based carboxylate framework systems. Our investigations have revealed the formation of five different zero-dimensional (0D) to three-dimensional (3D) ordered frameworks from the same reaction mixture, merely by varying the pH of the medium. The compounds were synthesized by the hydrothermal method and characterized by single-crystal X-ray diffraction. Increase of the pH of the medium led to abstraction of the imine hydrogen from the ligand and a concomitant increase in the OH(-) ion concentration in the solution, facilitating the construction of higher dimensional framework compounds. A stepwise increase in pH resulted in a stepwise increase in the dimensionality of the network, ultimately leading to the formation of a 3D porous solid. A gas adsorption study of the 3D framework compound confirmed its microporosity with a BET surface area of approximately 450?m(2) g(-1). Notably, the 3D framework compound catalyzes aldol condensation reactions of various aromatic aldehydes with acetone under heterogeneous conditions.  相似文献   

13.
A new singly charged pyridinium axle was prepared and combined with disulfonated dibenzo[24]crown-8 ether to form a [2]pseudorotaxane. The reaction of this new, anionic ligand with Zn(II) ions, under various crystallization conditions, resulted in the formation of three metal-organic rotaxane framework (MORF) solids; a one-periodic ML coordination polymer and two, two-periodic ML(2) square grid frameworks. The layers of square grids can be pillared to create full three-periodic MORF structures, which have completely neutral frameworks and are porous. These three-periodic materials represent the first examples of neutral porous MOFs in which one (or more) of the linkers is a mechanically interlocked molecule (MIM).  相似文献   

14.
Five cadmium(II) metal-organic frameworks, namely [Cd(BIPA)(daf)(H2O)3] · 2H2O (1), Cd2(BDC)2(pdon)2(H2O)2 (2), Cd(BIPA)(pdon) (3), Cd(BIPA)(daf) (4) and [Cd2(BIPA)2(pdon)2] · H2O (5) (H2BIPA = 5-bromoisophthalic acid, H2BDC = terephthalic acid, pdon = 1,10-phenanthroline-5,6-dione, daf = 4,5-diaza-fluoren-9-one), have been constructed from cadmium(II) salts with multi-carboxylate ligands and pdon ligands under different reaction pH. The framework structures of these polymeric complexes have been determined by the X-ray single crystal diffraction technique. The differences of the five metal-organic frameworks demonstrate that the reaction pH has an important effect on the structure of these complexes. The thermal analyses of these five complexes have been measured and discussed. Additionally, four complexes show strong fluorescence in the solid state at room temperature.  相似文献   

15.
A room-temperature solution route to the controlled synthesis of 0-, 1-, 2-, and 3-D assemblies of molecularly linked metal chalcogenide clusters using essentially identical building blocks is reported. The solvating, ligating, and reducing abilities of hydrazine at room temperature have been exploited to simultaneously dissolve metal chalcogenides and organize the resulting building blocks into frameworks of increasing dimensionalities. Control of the product dimensionality was achieved by varying the reactant ratios and the amount of hydrazine solvent employed in the reaction. The products have been characterized by single-crystal X-ray diffraction, Raman spectroscopy, and magnetic susceptibility.  相似文献   

16.
A series of metal-organic hybrid compounds were synthesized using two new phosphonic acids, pyridyl-4-phosphonic acid and p-xylylenediphosphonic acid (H(2)O(3)PCH(2)C(6)H(4)CH(2)PO(3)H(2)). The phosphonic acid ligands have been synthesized from their corresponding bromides following two different types of reactions. The reaction of pyridyl-4-phosphonic acid with three different divalent metal salts results in the formation of molecular structures of different dimensionality. The reaction of Cu(II) with the phosphonic acid under hydrothermal conditions yields a three-dimensional (3D) open framework structure having the molecular formula [Cu(4)(NC(5)H(4)-PO(3))(4)(H(2)O)(10)] (1). The reactions with Mn(II) and Zn(II) salts with the same phosphonic acid resulted in a two-dimensional layered and a dinuclear compound with molecular formulas [Mn(3)(NC(5)H(4)-PO(3))(4)(H(2)O)(6)(ClO(4))(2)] (2) and [Zn(2)(NHC(5)H(4)-PO(3)H)(2)Cl(4)] (3), respectively. Compound 1 crystallizes in the triclinic crystal system having space group P with structural parameters a = 7.4564(15) Angstrom, b = 9.1845(19) Angstrom, c = 11.582(2) Angstrom, alpha = 100.842(3) degrees, beta = 104.303(3) degrees, gamma = 94.774(3) degrees, and Z = 1. Compound 2 crystallizes in the triclinic crystal system, space group P, with structural parameters a = 7.6871(14) Angstrom, b = 10.576(2) Angstrom, c = 14.470(3)Angstrom, alpha = 81.340(3) degrees, beta = 81.561(3) degrees, gamma = 68.757(3) degrees, and Z = 2, whereas compound 3 crystallizes in a monoclinic crystal system with space group P2(1)/n. The structural parameters are as follows: a = 8.4969 (5) Angstrom, b = 9.3911 (5) Angstrom, c = 12.3779 (6) Angstrom, beta = 90.860(17) degrees, and Z = 4. The pyridylphosphonate ligand shows different ligation behavior toward the three divalent metal ions. On the other hand, p-xylylenediphosphonic acid on reaction with Co(II) formed a 3D compound [Co(2)(O(3)PCH(2)C(6)H(4)CH(2)PO(3))(2)(H(2)O)(2)] (4) with a layered and pillared structure. Compound 4 crystallizes in an orthorhombic crystal system with space group Pnma. The structural parameters are a = 21.744(4) Angstrom, b = 5.6744(10) Angstrom, c = 4.7927(9) Angstrom, and Z = 4.  相似文献   

17.
Three new metal-organic framework isomers have been synthesized by using the organic linker 5-triazole isophthalic acid and Mn(NO(3))(2)·xH(2)O. Structural conversions from non-porous to porous MOFs due to the template effect have been observed. The cross-sectional pore apertures of the resulting Mn-MOFs are comparable to the molecular dimensions of the template (pyrazine and 4,4'-bipyridine). The periodic increased porosity in Mn-MOFs depending on the size of the template used has been further confirmed by the CO(2) adsorption isotherms.  相似文献   

18.
It is of interest that the hydrous 3D metal-organic framework (MOF) {[Pb2(fum)2(H2O)4] · 2H2O}n (1) has been synthesized by the reaction of the fum dianion with the lead(II) ion (fum = fumarate) in the presence of pyrazole, while the anhydrous 3D MOF [Pb(fum)]n (2) is obtained by the reaction of the fum dianion with the lead(II) ion in the presence of pyrazine. These complexes were further characterized by FT-IR spectroscopy, thermogravimetric analysis (TG), X-ray analysis and solid state photoluminescence spectra. The arrangement of the ligands displays a coordination gap around the Pb atom, occupied possibly by a stereoactive lone pair of electrons on lead(II), with the coordination around both the eight-coordinated lead atom in 1 and six-coordinated lead atom in 2 exhibiting a hemidirected geometry. The fum ligand shows different ligation behavior toward the lead(II) ions in these complexes. These compounds exhibit photoluminescence with the maximum emission located in the UV region.  相似文献   

19.
Two new Mn(II) coordination polymers formed with molecular formula [Mn(H2O)2(HBTC)·(H2O)] 1 and [Mn(H2O)2(4,4′bipy)(HBTC)2]·(H4,4′bipy)2 2, where BTC = 1,2,4-benzenetricarboxylate and 4,4′bipy = 4,4′bipydine, have been synthesized via hydrothermal approach and characterized by single crystal X-ray diffraction techniques. 1 is composed of Mn–H2O–Mn 1D chains and further the chains are linked by HBTC ligands to form a 2D network in the ab plane; 2 is constructed by Mn–4,4′bipy–Mn 1D chains along the b direction with Mn2+ ions coordinated to H2BTC and water as terminal ligands to form a 2D network. We also prepared a third compound with the molecular formula of [Mn(H2O)(HBTC)·(H2O)] which has been recently structurally reported elsewhere. The magnetic properties of the three compounds have been studied in detail under variable temperatures.  相似文献   

20.
Hydrothermal reactions of Pb(NO3)2 and 3-fluorophthalic acid (H2Fpht) in the absence or presence of 2,2′-bipyridine (bpy) gave two coordination polymers: Pb5(Fpht)4(Fba)2 (1) and [Pb2(Fpht)2(bpy)(H2O)]·3H2O (2). The 3-fluorobenzoic acid (HFba) results from an in situ decarboxylation of H2Fpht. Solid 1 displays a 2-D structure, comprising center-related hexanuclear [Pb3(COO)6]2 units. There are three crystallographically different Pb(II) ions and two different ligands, Fpht and Fba. The Fpht ligands adopt μ6?:?η5η3 and μ6?:?η3η4 unusual bridging coordination modes. A 3-D supramolecular architecture is formed via C–H?F hydrogen bonds. Solid 2 possesses a 1-D chain structure, comprising center-related tetranuclear [Pb2(COO)4]2 units. There are two crystallographically different Pb(II) ions. The Fpht ligands adopt μ3?:?η2η3 and μ4?:?η3η3 bridging coordination. The free water molecules form (H2O)3 clusters to link the 1-D chain by hydrogen bonds. A 3-D supramolecular assembly is constructed via hydrogen bonds between the free water and the F of Fpht ligands. Fluorescence of the complexes originates from π*–π transitions of the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号