首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic nitroxides (>NO*) are stable radicals of diverse size, charge, lipophilicility, and cell permeability, which provide protection against oxidative stress via various mechanisms including SOD-mimic activity, oxidation of reduced transition metals and detoxification of oxygen- and nitrogen-centered radicals. However, there is no agreement regarding the reaction of nitroxides with peroxyl radicals, and many controversies in the literature exist. The question of whether nitroxides can protect by scavenging peroxyl radicals is important because peroxyl radicals are formed in biological systems. To further elucidate the mechanism(s) underlying the antioxidative effects of nitroxides, we studied by pulse radiolysis the reaction kinetics of piperidine, pyrrolidine, and oxazolidine nitroxides with several alkyl peroxyl radicals. It is demonstrated that nitroxides mainly reduce alkyl peroxyl radicals forming the respective oxoammonium cations (>N+=O). The most efficient scavenger of peroxyl radicals is 2,2,6,6-tetramethylpiperidine-N-oxyl (TPO), which has the lowest oxidation potential among the nitroxides tested in the present study. The rate constants of peroxyl reduction are in the order CH2(OH)OO*>CH3OO*>t-BuOO*, which correlate with the oxidation potential of these peroxyl radicals. The rate constants for TPO vary between 2.8x10(7) and 1.0x10(8) M-1 s-1 and for 3-carbamoylproxyl (3-CP) between 8.1x10(5) and 9.0x10(6) M-1 s-1. The efficacy of protection of nitroxides against inactivation of glucose oxidase caused by peroxyl radicals was studied. The results demonstrate a clear correlation between the kinetic features of the nitroxides and their ability to inhibit biological damage inflicted by peroxyl radicals.  相似文献   

2.
Cyclic nitroxides effectively protect cells, tissues, isolated organs, and laboratory animals from radical-induced damage. The present study focuses on the kinetics and mechanisms of the reactions of piperidine and pyrrolidine nitroxides with thiyl radicals, which are involved in free radical "repair" equilibria, but being strong oxidants can also produce cell damage. Thiyl radicals derived from glutathione, cysteine, and penicillamine were generated in water by pulse radiolysis, and the rate constants of their reactions with 2,2,6,6-tetramethylpiperidine-1-oxyl (TPO), 4-OH-TPO, and 3-carbamoyl-proxyl were determined to be (5-7) x 10 (8) M (-1) s (-1) at pH 5-7, independent of the structure of the nitroxide and the thiyl radical. It is suggested that the reaction of nitroxide (>NO (*)) with thiyl radical (RS (*)) yields an unstable adduct (>NOSR). The deprotonated form of this adduct decomposes via heterolysis of the N-O bond, yielding the respective amine (>NH) and sulfinic acid (RS(O)OH). The protonated form of the adduct decomposes via homolysis of the N-O bond, forming the aminium radical (>NH (*+)) and sulfinyl radical (RSO (*)), which by subsequent reactions involving thiol and nitroxide produce the respective amine and sulfonic acid (RS(O) 2OH). Nitroxides that are oxidized to the respective oxoammonium cations (>N (+)O) are recovered in the presence of NADH but not in the presence of thiols. This suggests that the reaction of >N (+)O with thiols yields the respective amine. Two alternative mechanisms are suggested, where >N (+)O reacts with thiolate (RS (-)) directly generating the adduct >NOSR or indirectly forming >NO (*) and RS (*), which subsequently together yield the adduct >NOSR. Under physiological conditions the adduct is mainly deprotonated, and therefore nitroxides can detoxify thiyl radicals. The proposed mechanism can account for the protective effect of nitroxides against reactive oxygen- and nitrogen-derived species in the presence of thiols.  相似文献   

3.
Summary The mild reduction of the nitroxides1 a–j to the corresponding sterically hindered amines2 a–j by means of ethyl mercaptane is reported. The reaction mixtures of1 a, b, g were analyzed by glc/ms.
Die Reaktion von Nitroxiden mit Ethylmercaptan: Eine milde Methode für die Umsetzung von Nitroxiden zu den entsprechenden Aminen
Zusammenfassung Es wird über die milde Reduktion der Nitroxide1 a–j zu den entsprechenden sterisch gehinderten Aminen2 a–j mittels Ethylmerkaptan berichtet. Die Reaktionsmischungen von1 a, b, g wurden mittels GLC/MS analysiert.
  相似文献   

4.
Stable nitroxide radicals are potent antioxidants and are among the most effective non-thiol radioprotectants, although they react with hydroxyl radicals more slowly than typical phenolic antioxidants or thiols. Surprisingly, the reduced forms of cyclic nitroxides, cyclic hydroxylamines, are better reductants yet have no radioprotective activity. To clarify the reason for this difference, we studied the kinetics and mechanisms of the reactions of nitroxides and their hydroxylamines with (*)OH radicals and with OH-adducts by using pulse radiolysis, fluorimetric determination of phenolic radiation products, and electron paramagnetic resonance spectrometric determination of nitroxide concentrations following radiolysis. Competition kinetics with phenylalanine as a reference compound in pulse radiolysis experiments yielded rate constants of (4.5 +/- 0.4) x 10(9) M(-1) s(-1) for the reaction of (*)OH radical with 2,2,6,6-tetramethylpiperidine-N-oxyl (TPO), 4-hydroxy-TPO (4-OH-TPO), and 4-oxo-TPO (4-O-TPO), (3.0 +/- 0.3) x 10(9) M(-1) s(-1) for deuterated 4-O-TPO, and (1.0 +/- 0.1) x 10(9) M(-1) s(-1) for the hydroxylamine 4-OH-TPO-H. The kinetic isotope effect suggests the occurrence of both (*)OH addition to the aminoxyl moiety of 4-O-TPO and H-atom abstraction from the 2- or 6-methyl groups or from the 3- and 5-methylene positions. This conclusion was further supported by final product analysis, which demonstrated that (*)OH partially oxidizes 4-O-TPO to the corresponding oxoammonium cation. The rate constants for the reactions of the nitroxides with the OH-adducts of phenylalanine and terephthalate have been determined to be near 4 x 10(6) M(-1) s(-1), whereas the hydroxylamine reacted at least 50 times slower, if at all. These findings indicate that the reactivity toward (*)OH does not explain the differences between the radioprotective activities of nitroxides and hydroxylamines. Instead, the radioprotective activity of nitroxides, but not of hydroxylamines, can be partially attributed to their ability to detoxify OH-derived secondary radicals.  相似文献   

5.
Free radicals generated from UV irradiation of simple aliphatic amides in anaerobic and nitric oxide (NO)‐saturated liquid mixtures or solutions gave EPR spectra of nitroxides. The application of isotopic effects to EPR spectra and the generation of radicals by transient radical attack on substrate molecules or by photolysing amine or acetoin were used to help identify photochemically produced radicals from the amides. The aliphatic amides used were formamide, acetamide and their N‐methyl‐ or deuterium‐substituted derivatives. Transient radicals used to attack the amides via hydrogen‐atom abstraction were generated from the initiator AIBN or AAPH. The observation of various nitroxides indicates the reactivity of NO for trapping acyl, carbamoyl and other carbon‐centered radicals. Possibly mechanistic pathways diagnosed with this trap are proposed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
刘有成  张发 《化学学报》1989,47(4):411-416
本文从反应产物, 化学反应计量关系, 电化学模拟和动力学测定诸方面对氧铵盐与dl-半胱氨酸在盐酸水溶液中的反应作了研究.  相似文献   

7.
张发  刘有成 《化学学报》1989,47(2):186-190
本文报道于酸性水溶液中, 以单电流阶跃法, 单电位阶跃法, 计时电量法和循环伏安法测定了2,2,6,6-四甲基-4-羟基哌啶-1-氧自由基的扩散系数及其在碳糊和铂工作电极上的单电子氧化反应的传递系数. 以及该电极反应的标准速率常数.  相似文献   

8.
Cysteine can behave simultaneously as an amino compound and thiol in the reaction with o-phthalaldehyde to produce a fluorescent compound. At room temperature, no reaction is observed, but a very stable compound (λexc = 364 nm, λem = 424 nm) is slowly formed upon heating. Constant fluorescence intensity is achieved after heating at 50°C for 3 h, remaining unchanged for at least 3 h when cooled.  相似文献   

9.
A fluorogenic method for the determination of cysteine concentration has been developed.  相似文献   

10.
Photochemical or thermal decomposition of azo‐compounds (such as 2,2‐azobisisobutyronitrile, 2,2‐azobis(2‐methylpropionamidine) dihydrochloride, dialkyl peroxides (such as tert‐butyl peroxide and diacyl peroxides (such as benzoyl peroxide) in anaerobic nitric oxide (NO)‐saturated dimethylsulfoxide (DMSO) or aqueous solutions yielded nitroxides. Well‐characterized electron paramagnetic resonance spectra of nitroxides revealed that NO was favorable for reacting with carbon‐centered and less stereo‐inhibited transient alkyl radicals, giving kinds of nitrosoalkane, typically nitrosomethane, which act sequentially as C‐nitroso compounds to trap transient radicals present in solution, yielding spin‐trapping adducts, i.e. nitroxides. Radicals, including sulfinyl radicals from UV‐irradiated DMSO, were trapped by the in situ formed CH3NO. O‐centered radicals could not add to the freshly formed C‐nitroso compounds. Possible mechanisms are suggested. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Conclusions 3-Acetamido-4-acetylmercapto-2-butanone is formed when cysteine, cystine or serine is reacted with Ac2O and either pyridine or -picoline in the presence of thioacetic acid.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1660–1661, July, 1977.  相似文献   

12.
Cysteine adds in a two step reaction to acroleine, crotonaldehyde and 4-hydroxypentenal. The first addition products are the β-cysteinyl-substituted saturated aldehydes 1a, 1b and 3. Only the monoadduct of 3, which is stabilized through intramolecular hemiacetal formation, could be isolated. The derivatives 1a and 1b reacted rapidly with additional cysteine to give the thiazolidine compounds 2a and 2b. Whereas 2a and 2b were the only products even in reactions carried out with a molar ratio of aldehyde : cysteine ≧ 1, ratio < 1 was required to obtain a thiazolidine derivative in reactions with hydroxypentenal. The structures of compound 2a, 2b, 3 and 4 were ascertained by means of UV, IR and NMR measurements, potentiometric titrations, determination of the rate laws and elemental analysis. All adducts are in solution in equilibrium with cysteine and the parent aldehydes. Rate constants for forward and reverse reactions were estimated. The rate of forward reactions increase approx. 10-fold per pH unit in the pH range 2–10.  相似文献   

13.
The kinetics and mechanisms of the reaction of cysteine with cysteine thiosulfinate ester in aqueous solution have been studied by stopped-flow spectrophotometry between pH 6 and 14. Two reaction pathways were observed for pH > 12: (1) an essentially pH-independent nucleophilic attack of cysteinate on cysteine thiosulfinate ester, and (2) a pH-dependent fast equilibrium protonation of cysteine sulfenate that is followed by rate-limiting comproportionation of cysteine sulfenic acid with cysteinate to give cystine. For 6 < pH < 12, the rate-determining reaction between cysteinate and cysteine thiosulfinate ester becomes pH-dependent due to the protonation of their amine groups. Hydrolysis of cysteine thiosulfinate ester does not play a role in the aforementioned mechanisms because the rate-determining nucleophilic attack by hydroxide is relatively slow.  相似文献   

14.
15.
The kinetics of the thermally and radiation initiated chain reaction between trichloroethylene and cyclopentane to produce 1,1-dichlorovinylcyclopentane and hydrogen chloride have been investigated in the temperature range 250–360°C at high pressure in the gas phase. The rate governing step in the chain is (k3 = 3.3 × 109 exp ?(4800/RT) cc mole?1 sec ?1). The rate of the unimolecular decomposition of trichloroethylene is 1.4 × 1014 exp ?(61,200/RT) sec?1.  相似文献   

16.
The rate constant of the reaction OH + HCl → H2O + Cl was measured in a flow tube over the temperature range 224 to 460°K using resonance fluorescence detection of OH. An Arrhenius expression k1 = (2.0 ± 0.1) × 10?12 exp [?(620 ± 20 cal/mole)/RT] was obtained. Stratospheric and reaction kinetic implications are discussed briefly.  相似文献   

17.
18.
A spectroscopic investigation into the reaction of sodium tetrathionate with cysteine at pH 5 both at the boil and at room temperature has been carried out. The Raman and infrared spectra of the model compounds cysteine, cysteine-S-sulfonate, cysteine-S-thiosulfonate, sodium thiosulfate and sodium sulfite were also obtained and vibrations involving the sulfur atoms were analyzed in detail. These results were utilized in the interpretation of the spectra obtained from tetrathionate-cysteine reaction mixtures. The reaction supernatants were analyzed by high performance thin layer chromatography while the precipitates were analyzed gravimetrically. It was found that during the reaction, the thiol groups of cysteine are oxidised to give predominantly cysteine-S-sulfonate. Cystine was also detected but was determined gravimetrically to be a minor reaction product. No significant amounts of cysteine-S-thiosulfonate were detected. The reaction is accompanied by the formation of elemental sulfur and a small amount of sulfite. Major reaction pathways are put forth that are consistent with the experimental data.  相似文献   

19.
20.
The reaction of hydroxyl radicals with hydrogen chloride (reaction 1) has been studied experimentally using a pulsed-laser photolysis/pulsed-laser-induced fluorescence technique over a wide range of temperatures, 298-1015 K, and at pressures between 5.33 and 26.48 kPa. The bimolecular rate coefficient data set obtained for reaction 1 demonstrates no dependence on pressure and exhibits positive temperature dependence that can be represented with modified three-parameter Arrhenius expression within the experimental temperature range: k1 = 3.20 x 10(-15)T0.99 exp(-62 K/T) cm3 molecule(-1) s(-1). The potential-energy surface has been studied using quantum chemical methods, and a transition-state theory model has been developed for the reaction 1 on the basis of calculations and experimental data. The model results in modified three-parameter Arrhenius expressions: k1 = 8.81 x 10(-16)T1.16 exp(58 K/T) cm3 molecule(-1) s(-1) for the temperature range 200-1015 K and k1 = 6.84 x 10(-19)T2.12 exp(646 K/T) cm3 molecule(-1) s(-1) for the temperature dependence of the reaction 1 rate coefficient extrapolation to high temperatures (500-3000 K). A temperature dependence of the rate coefficient of the Cl + H2O --> HCl + OH reaction has been derived on the basis of the experimental data, modeling, and thermochemical information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号