首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysprosium carbonates nanoparticles were synthesized by the reaction of dysprosium acetate and NaHCO3 by a sonochemical method. Dysprosium oxide nanoparticles with average size about 17 nm were prepared from calcination of Dy2(CO3)3·1.7H2O nanoparticles. Dy(OH)3 nanotubes were synthesized by sonication of Dy(OAC)3·6H2O and N2H4. The as-synthesized nanostructures were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Photoluminescence measurement shows that the nanoparticles have two emission peaks around 17,540 cm?1 and 20,700 cm?1, which should come from the electron transition from 4F9/2  6H15/2 levels and 4F9/2  6H13/2 levels, respectively. The effect of calcination temperature and sonication time was investigated on the morphology and particle size of the products. The sizes could be controlled by the feeding rate of the precipitating agent (NaHCO3 and N2H4) and slower feeding rate lead to smaller nanoparticles.  相似文献   

2.
A mixed oxide consisting of TiO2 as the major phase and CeO2−y (0<y<0.5) as the dopant phase was prepared via the sol-gel reaction of Ti(i-OC3H7)3 in an aqueous solution of Ce(NO3)3. The resulting oxide powders with different CeO2−y contents were all composed of nano-sized spheres. The CeO2−y phase was identified to have retarding effect on the phase transition from anatase TiO2 to rutile TiO2 at calcinations temperature as high as 800 °C, which would otherwise be a thorough conversion. The CeO2−y-TiO2 powders could apparently shift the UV-absorption band of TiO2 toward visible range, and there was an optimal CeO2−y content in association with the maximum absorbance. This effect is interpreted as the existence of an n-type impurity band, due to the substitution of Ti4+ for Ce3+/4+ at the interface between the two oxides, in the gap of TiO2. According to X-ray photoelectron spectroscopy (XPS) investigation, the Ti element mainly existed as the chemical state of Ti4+ and the Ce oxide doping did not affect the peak position of Ti 2p. The Ce 3d spectrum of CeO2−y-doped TiO2 sample basically denotes a mixture of Ce3+/4+ oxidation states giving rise to a myriad of peaks.  相似文献   

3.
4.
The study on the optical properties of alkali borate glasses doped with rare earths is an interesting area of research. Dysporosium doped lithium magnesium borate glasses were prepared by melt-quenching technique with dysporosium concentration varying from 0.3 to 1.0 mol %. Physical and optical properties of Lithium Magnesium Borate doped with different concentration of Dy3+ were observed based on its physical parameters, emission spectra and absorption spectra. The absorption spectra of this study exhibits eight absorption bands with hypersensitive peak at 1260 nm (6 H 9/2). Two emitted spectra transitions were also observed at 4 F 9/26 H 15/2, 4 F 9/26 H 13/2. Lastly, important physical parameters for each concentration of dopant such as density, ions concentration, polaron radius, inter-nuclear distance, refractive index, oscillator strength and other parameters were determined.  相似文献   

5.
In this paper, we report the observation of intrinsic room temperature ferromagnetism in pure La2O3 nanoparticles. Magnetism measurement indicates that all of the samples exhibit room temperature ferromagnetism and the saturation magnetization for the samples decreases with the increase in annealing temperature from 700 to 1,000 °C. X-ray photoelectron spectroscopy identifies the presence of oxygen vacancies in the La2O3 nanoparticles. The fitting results of the O 1s spectrum indicate that the variation of the oxygen vacancy concentration is in complete agreement with the change of the saturation magnetization. It is also found that the saturation magnetization of the La2O3 nanoparticles can be tuned by post-annealing in argon or oxygen atmosphere. These results suggest that the oxygen vacancies are largely responsible for the room temperature ferromagnetism in pure La2O3 nanoparticles.  相似文献   

6.
Yttrium oxide (Y2O3) doped with Dy3+ & Eu3+ nanoparticle has been synthesized by solution combustion method. The formation of the compounds has been checked by X-ray diffraction method. The crystallite/particle size has been measured using Scherrer formula as well as by transmission electron microscopy which show that the size of the particles are in the nanorange. The frequency and temperature dependent variation of impedance Z*, dielectric constant (ε′), dielectric loss (ε″) and AC conductivity (σ) of Y2O3: Dy3+ & Eu3+ nanoparticles were also measured. The real and imaginary part of complex impedance makes semicircle in the complex plane. The center of semicircle arc is found to be shifted toward higher value of real part of impedance with increasing temperature. This indicates that the conductivity of the material increases with the increase in temperature. Cole–Cole plots demonstrate that the dielectric relaxation process occurs in the material. The AC conductivity (σ AC) increases with the increase in temperature within the frequency range of 103–107 Hz confirming the hopping of the electrons in the conduction process. The value of impedance decreases sharply with increasing frequency and attains minimum value after 105 Hz at all temperatures.  相似文献   

7.
《Current Applied Physics》2014,14(8):1067-1071
Dy3+ doped BaYF5 nanoparticles with tetragonal structure were synthesized by hydrothermal method and solvothermal method. The structural and the luminescent properties of the samples were characterized by X-ray diffraction pattern, TEM and photoluminescence spectra. Emission of Dy3+ originated from 4I15/2 located at 450 nm and 4F9/2 located at 478 nm, 573 nm and 660 nm were observed under excitation of 355 nm laser. Behavior of fluorescence intensity ratio with temperature increasing from room temperature to approximately 800 K was investigated. And the optimum temperature range for thermometry is obtained to be 550–800 K according to its sensitivity-temperature relation, indicating the potential application of BaYF5:Dy3+ as a luminescent temperature sensor.  相似文献   

8.
Pristine LiMn2O4 and LiCrxMn2-xO4 (x=0.01−0.20) have been synthesized by sol-gel method using malonic acid as chelating agent. This technique involves less impurities, shorter heat treatment time, sub-micron sized particles, good surface morphology, better homogeneity, good agglomeration and better crystallinity. The synthesized spinel materials have been characterized by XRD, SEM, TEM, EDAX and electrochemical studies like charge-discharge studies, cyclic voltammogram, cycleability studies have also been carried out. All the results exhibit that chromium substitution improves the structural stability of LiMn2O4 spinel upon repeated cycling.  相似文献   

9.
10.
Nanocrystal Gd2(WO4)3 and Gd2WO6 phosphors doped with Dy3+ were prepared via co-precipitation method under different reaction conditions. It was found that the nanocrystal Gd2(WO4)3 and Gd2WO6 phosphors exist in the monoclinic phase, and the phosphor particles showed sphere-like and uniform shape. The concentration quenching behavior and the dependence of fluorescence lifetime on the doping concentration were studied. It was found that the electric dipole–dipole interaction is the physical mechanism for the energy transfer between Dy3+ ions in both the nanocrystal Gd2(WO4)3 and Gd2WO6 phosphors.  相似文献   

11.
Ion synthesis and laser annealing of Cu nanoparticles in Al2O3   总被引:1,自引:0,他引:1  
Al2O3 samples with Cu nanoparticles, synthesised by ion implantation at 40 keV with a dose of 1×1017 ion/cm2 and a current density from 2.5 to 12.5 μA/cm2, were annealed using ten pulses from a KrF excimer laser with a single pulse fluence of 0.3 J/cm2. The copper depth distribution, formation and modification of metal nanoparticles under the ion implantation and laser treatment were studied by Rutherford backscattering (RBS), energy dispersive X-ray (EDX) analysis, atomic force microscopy (AFM) and optical spectroscopy. It was found that laser annealing leads to a reduction in the nanoparticle size without diffusion of metal atoms into the bulk. The change in particle size and the possibility for oxidation of the copper particles are examined in the framework of Mie theory. Calculations presented show that under excimer laser treatment, Cu nanoparticles are more likely to be reduced in size than to undergo oxidation. Received: 19 April 2001 / Accepted: 7 November 2001 / Published online: 23 January 2002  相似文献   

12.
Powders and thin films of nanocrystalline yttrium disilicate (Y2Si2O7) doped with Ce3+ have been prepared by a sol–gel method. Structure and morphology of the synthesised samples have been determined and spectroscopic properties compared. The triclinic α-Y2Si2O7 form (space group P 1-) for the powders annealed between 1000°C and 1200°C has been found. A total conversion into a thortveitite-type monoclinic β-Y2Si2O7 polymorph after annealing of powder samples at 1400°C (space group C2/m) has been observed. In the case of films even at 1300°C the basically pure triclinic α-Y2Si2O7 phase was observed with luminescent spectroscopy. The influence of grain size, controlled by thermal treatment, on the structure and luminescence properties of the fabricated materials are presented and discussed.  相似文献   

13.
《Applied Surface Science》2001,169(1-2):52-59
Wet chemical and plasma etch processes were developed for pattering of Sc2O3 films on GaN. Chlorine-based plasma chemistries produced a significant chemical enhancement of removal rate over pure Ar sputtering. The etching was anisotropic and did not significantly alter the surface composition of the Sc2O3 films. Reaction-limited wet etching in the HNO3/HCl/HF system was investigated as a function of solution formulation and temperature. The activation energy for the wet etching ranged from 8 to 14 kcal/mol and the etch rates were independent of solution agitation.  相似文献   

14.
Institute of Physics of Solids and Semiconductors, Academy of Sciences of Belarus, 17, P. Brovka Str., GSP, Minsk, 220072. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 63, No. 4, pp. 667–675, July–August, 1996.  相似文献   

15.
16.
Cerium doped lanthanum cobaltite perovskites La1–x Ce x CoO3 with x = 0, 0.2, 0.4 were prepared by the sol-gel method (calcined for 5 h at 750°C) and characterized by X-ray diffraction, X-ray absorption, energy dispersive X-ray spectroscopy and Brunauer–Emmett–Teller surface area analysis. The results showed that the cerium doping promoted the structural transformation of LaCoO3 from rhombohedral into cubic structure. High specific surface area and small crystallite size were achieved at x = 0.2. The X-ray absorption results confirmed the formation of compound La1–x Ce x CoO3.  相似文献   

17.
The low Z polycrystalline LiMgBO3:Dy3+ material has been successfully synthesized by novel solution combustion synthesis and studied for its luminescence characteristics. LiMgBO3:Dy3+ material has shown promising TL sensitivity with a broad dosimetric glow peak at 154 °C. Near the tissue equivalent TL phosphor with Dy dopant has half of the TL sensitivity as compared to commercial TLD-100. The kinetic parameters i.e. trap depth or activation energy and frequency factor from the glow curve derived by using peak shape method. The main dosimetric characteristics such as dose response and fading effect are investigated. The state of dopant confirmed using photoluminescence spectra.  相似文献   

18.
Microwave absorption was studied for magnetic nanoparticles of Fe3O4 (A) prepared by co-precipitation and Ni0.35Cu0.15Zn0.5Fe2O4 (B) nanoparticles prepared by the sol-gel combustion method at different temperature. In all cases only one ferromagnetic resonance line was observed which indicated that the materials were magnetically uniform. The linewidths were large mainly because of the wide variations in particle sizes, shapes and orientations. As expected, A type nanoparticles showed no absorption at zero-field. However, B type nanoparticles exhibited a sizable loss at a zero-field and the effect increases with the increase of reaction temperature. Mechanical crushing of the sample further enhanced the absorption.  相似文献   

19.
Cr3+-doped α-Al2O3 nanoparticles (Al2−xCrxO3, 0.005 ≤ x ≤ 0.05) were synthesized by co-precipitation method. X-ray diffraction (XRD) patterns of Cr3+:Al2O3 nanoparticles revealed the crystallite size of ∼53 nm and electron microscopy (SEM & TEM) confirmed the spherical nanoparticle formation. Diffuse reflectance spectra (DRS) displayed peaks at 406 and 558 nm corresponding to the Cr3+ transitions which became prominent with the increase in Cr3+ concentration which was also evidenced by the gradually increasing pink coloration of the samples. Photoluminescence (PL) studies showed the sharp red emission at 694 nm (ruby line) which was observed for all samples. The Dq/B value for all samples was found to be greater than 2.3 confirming the presence of Cr3+ ions in the octahedral sites. Chromaticity diagrams displayed the maximum red appearance for the sample with x = 0.01 and a lifetime of 4 ms. The synthesized Cr3+:Al2O3 nanoparticles with smaller crystallite sizes and narrow near monochromatic emission can be used in various applications including sensing, lasing, and bioimaging applications.  相似文献   

20.
Single-crystal Al2O3(0001) and Al2O3(1120) substrates are implanted by 160-keV Au+ ions with doses from 1015 to 1017 cm?2. Some of the implanted samples are air-annealed at 800–1200°C. The properties of the synthesized composite layers are studied by Rutherford backscattering and linear optical reflection measurements, and their nonlinear optical characteristics are examined by RZ-scanning using a picosecond Nd: YAG laser operating at a wavelength of 1064 nm. The Rutherford backscattering spectra indicate that the implanted impurity concentrates near the surface of the Al2O3. The formation of gold nanoparticles in the Al2O3 can be judged from the characteristic optical plasmon resonance band in the reflectance spectra of the samples irradiated to a dose higher than 6.0 × 1016 cm?2. The synthesized particles are shown to be responsible for nonlinear optical refraction in the samples. The nonlinear refractive index, n 2, and the real part of the third-order susceptibility, Rex(3), of the composite layers are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号