首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
This paper reports the experimental results on macroscopic deformation instability and domain morphology evolution during stress-induced austenite → martensite (A→M) phase transformation in superelastic NiTi polycrystalline shape memory alloy microtubes. High-speed data and image acquisition techniques were used to investigate the dynamic and quasi-static events which took place in a displacement-controlled quasi-static tensile loading/unloading process of the tube. These events include dynamic formation, self-merging, topology transition, convoluted front motion and front instability of a macroscopic deformation domain. The reported phenomena brought up several fundamental issues regarding the roles of macroscopic domain wall energy and kinetics as well as their interplay with the bulk strain energy of the tube in the observed morphology instability and pattern evolution under a mechanical force. These issues are believed to be essential elements in the theoretical modeling of macroscopic deformation patterns in polycrystals and need systematic examination in the future.  相似文献   

3.
This paper describes an experimental study of stress-induced martensitic phase transformation in the SMA Nickel-Titanium. The rich local thermo-mechanical interactions that underlie transformation are examined using three-dimensional Digital Image Correlation (strain fields) and infrared imaging (thermal fields). We quantify the complex local interactions between released/absorbed latent heat and the extent of transformation, and explore the characteristics of the phase fronts and the evolution of martensitic volume fraction. We also quantify a strong strain memory in the martensite that forms in the wake of the phase transformation front. The accommodated strain in the martensite will remain constant during loading, even as the existing phase front propagates. There also exists a remarkable strain memory in the martensite that persists from cycle to cycle, indicating that the local elastic stress fields in the martensite are driven by a dislocation structure and martensitic nuclei that largely stabilize during the first loading cycle.  相似文献   

4.
In this work, a nonlocal phenomenological behavior model is proposed in order to describe the localization and propagation of stress-induced martensite transformation in shape memory alloy (SMA) wires and thin films. It is a nonlocal extension of an existing local model that was derived from a micromechanical-inspired Gibbs free energy expression. The proposed model uses, besides the local field of the internal variable, namely the martensite volume fraction, a nonlocal counterpart. This latter acts as an additional degree of freedom, which is determined by solving an additional partial differential equation (PDE), derived so as to be equivalent to the integral definition of a nonlocal quantity. This PDE involves an internal length parameter, dictating the global scale at which the nonlocal interactions of the underlying micromechanisms are manifested during phase transformation. Moreover, to account for the unstable softening behavior, the transformation yield force parameter is considered as a gradually decreasing function of the martensite fraction. Possible material and geometric imperfections that are responsible for localization initiation are also considered in this analysis. The obtained constitutive equations are implemented in the Abaqus® finite element code in one and two dimensions. This requires the development of specific finite elements having the nonlocal volume fraction variable as an additional degree of freedom. This implementation is achieved through the UEL user’s subroutine. The effect of martensitic localization on the superelastic global behavior of SMA wire and holed thin plate, subjected to tension loading, is analyzed. Numerical results show that the developed tool correctly captures the commonly observed unstable superelastic behavior characterized by nucleation and propagation of martensitic phase. In particular, they show the influence of the internal length parameter, appearing in the nonlocal model, on the size of the localization area and the stress nucleation peak.  相似文献   

5.
This article presents a new asymptotic method to predict dynamic pull-in instability of nonlocal clamped–clamped carbon nanotubes (CNTs) near graphite sheets. Nonlinear governing equations of carbon nanotubes actuated by an electric field are derived. With due allowance for the van der Waals effects, the pull-in instability and the natural frequency–amplitude relationship are investigated by a powerful analytical method, namely, the parameter expansion method. It is demonstrated that retaining two terms in series expansions is sufficient to produce an acceptable solution. The obtained results from numerical methods verify the strength of the analytical procedure. The qualitative analysis of system dynamics shows that the equilibrium points of the autonomous system include center points and unstable saddle points. The phase portraits of the carbon nanotube actuator exhibit periodic and homoclinic orbits.  相似文献   

6.
The characteristic-value analysis of plastic dynamic buckling is presented for columns under the action of elastoplastic compression wave caused by an axial-step load. Two critical conditions constituting a dynamic instability criterion are derived on the basis of transformation and conservation of energy. The governing equations, the boundary conditions and the continuity conditions derived by the use of the first critical condition are the same as those given by the adjacent-equilibrium criterion and are insufficient for determining two characteristic parameters involved in the governing equations. A supplementary restraint equation for buckling deformations at the plastic-wave front and the elastic-wave front is derived by the use of the second critical condition. Then, a couple of characteristic equations for two characteristic parameters are derived on the condition that the governing equations have non-trivial solutions satisfying the boundary conditions, the continuity conditions and the supplementary restraint equation. The critical-load parameters, dynamic characteristic parameter (exponent parameter of inertia term) and dynamic buckling modes are calculated from the solutions of the characteristic equations.  相似文献   

7.
弹性压应力波下直杆动力失稳的机理的判据   总被引:16,自引:0,他引:16  
王安稳 《力学学报》2001,33(6):812-820
基于应力波理论和失稳瞬间能量的转换和守恒,导出了一个直杆动力分岔失稳的准则:(1)直杆在发生分岔失稳的瞬间所释放出的压缩变形能等于屈曲所需变形能与屈曲动能之和;(2)在上述能量转换过程中,能量对时间的变化率服从守恒定律。应用临界条件(1)推导出的直杆动力失稳的控制方程和杆端边界条件以及连续条件,与应用哈密顿原理推导的结果完全相同,但不足以构成求解直杆动力失稳问题的完备定解条件,导出包含两个特征参数的一对特征方程。从而建立了求解直杆动力失稳模态和两个特征参数(临界力参数和失稳惯性项指数参数即动力特征参数)的较严密理论方法。  相似文献   

8.
Here, the effects of localization and propagation of martensitic phase transformation on the response of SMA thin structures subjected to thermo-mechanical loadings are investigated using nonlocal constitutive model in conjunction with finite element method. The governing equations are derived based on variational principle considering thermo-mechanical equilibrium and the spatial distribution of the nonlocal volume fraction of martensite during transformation. The nonlocal volume fraction of martensite is defined as a weighted average of the local volume fraction of martensite over a domain characterized by an internal length parameter. The local version of the thermo-mechanical behavior model derived from micromechanics considers the local volume fraction of martensite and the mean transformation strain. A 4-noded quadrilateral plane stress element with three degrees of freedom per node accounting for in-plane displacements and the nonlocal volume fraction of martensite is developed. Numerical simulations are conducted to bring out the influence of material and geometrical heterogeneities (perturbations/defects) on the localization and propagation of phase transformation in SMA thin structures. Also, a sensitivity analysis of the material response due to the localization and the other related model parameters is carried out. The detailed investigation done here clearly shows that the localization of phase transformation has significant effect on the response of shape memory alloys.  相似文献   

9.
Luongo  Angelo 《Nonlinear dynamics》2001,25(1-3):133-156
Localization phenomena in one-dimensional imperfect continuous structures are analyzed, both in dynamics and buckling. By using simple models, fundamental concepts about localization are introduced and similarities between dynamics and buckling localization are highlighted. In particular, it is shown that strong localization of the normal modes is due to turning points in which purely imaginary characteristic exponents assume a non zero real part; in contrast, if turning points do not occur, only weak localization can exist. The possibility of a disturbance propagating along the structure is also discussed. A perturbation method is then illustrated, which generalizes the classical WKB method; this allows the differential problem to be transformed into a sequence of algebraic problems in which the spatial variable appears as a parameter. Applications of the method are worked out for beams and strings on elastic soil. All these structures are found to have nearly-defective system matrices, so their characteristic exponents are highly sensitive to imperfections.  相似文献   

10.
In this paper, we study phase transitions in a slender circular cylinder composed of a compressible hyperelastic material with a non-convex strain-energy function in a loading process. We aim to construct the asymptotic solutions based on an axisymmetrical three-dimensional setting and use the results to describe the key features observed in the experiments by others. By using a methodology involving coupled series-asymptotic expansions, we derive the normal form equation of the original complicated system of non-linear PDEs. Based on a phase-plane analysis, we manage to deduce the global bifurcation properties and to solve the boundary-value problem analytically. The explicit solutions (including post-bifurcation solutions) in terms of integrals are obtained. The engineering stress-strain curve plotted from the asymptotic solutions can capture the key features of the curve measured in some experiments. Our results can also describe the geometrical size effect as observed in experiments. It appears that the asymptotic solutions obtained shed certain light on the instability phenomena associated with phase transitions in a cylinder.  相似文献   

11.
An analytical procedure to evaluate the behavior of shape memory alloy (SMA) composite under hygrothermal environment is presented. The SMA wires are considered as inclusions embedded in a homogeneous matrix medium of the composite. The inhomogeneity associated with the phase transformation and thermal strains in the SMA wire as well as the hygrothermal strain in the matrix is homogenized using Eshelby’s equivalent inclusion method. In the present work, a similar approach adopted for SMA composites by Marfia and Sacco [Marfia, S., Sacco, E., 2005. Micromechanics and homogenisation of SMA-wire-reinforced materials. J. Appl. Mech. 72 (2), 259–268.] is considered in order to validate the response of SMA composite subjected to thermo-elastic strain field. However, in the present approach, certain modifications and new derivations for the inelastic strain tensors is carried out. First, the constitutive laws for the SMA wire and matrix are expressed in terms of the average strain in the composite. The evolutionary equations used to characterize the pseudoelastic (PE) behavior of the SMA wire are redefined in terms of the eigen strains (phase transformation and thermal strains) occurring in the SMA wire, which are then expressed in terms of the average strain in the composite. Further, the SMA composite constitutive law under coupled hygro-thermo-elastic strain fields is proposed. The generic homogenized hygric and thermal inelastic composite tensors required for the proposed hygro-thermo-elastic constitutive law are derived. Finally, the SMA composite lamina is characterized using Eshelby’s equivalent inclusion method. Using the proposed modifications and derivations, the analytical results are validated for the case of thermo-elastic strain fields and the procedure is then extended to evaluate the SMA composite behavior under hygro-thermo-elastic strain fields. The results include the effect of thermo-elastic and hygro-thermo-elastic strains on the transformation stresses and the nature of hysteresis due to hygric and thermo-elastic strains.  相似文献   

12.
A constitutive modeling approach for shape memory alloy (SMA) wire by taking into account the microstructural phase inhomogeneity and the associated solid–solid phase transformation kinetics is reported in this paper. The approach is applicable to general thermomechanical loading. Characterization of various scales in the non-local rate sensitive kinetics is the main focus of this paper. Design of SMA materials and actuators not only involve an optimal exploitation of the hysteresis loops during loading–unloading, but also accounts for fatigue and training cycle identifications. For a successful design of SMA integrated actuator systems, it is essential to include the microstructural inhomogeneity effects and the loading rate dependence of the martensitic evolution, since these factors play predominant role in fatigue. In the proposed formulation, the evolution of new phase is assumed according to Weibull distribution. Fourier transformation and finite difference methods are applied to arrive at the analytical form of two important scaling parameters. The ratio of these scaling parameters is of the order of 106 for stress-free temperature-induced transformation and 104 for stress-induced transformation. These scaling parameters are used in order to study the effect of microstructural variation on the thermo-mechanical force and interface driving force. It is observed that the interface driving force is significant during the evolution. Increase in the slopes of the transformation start and end regions in the stress–strain hysteresis loop is observed for mechanical loading with higher rates.   相似文献   

13.
In this paper, we study the localization phenomena in a slender cylinder composed of an incompressible hyperelastic material subjected to axial tension. We aim to construct the analytical solutions based on a three-dimensional setting and use the analytical results to describe the key features observed in the experiments by others. Using a novel approach of coupled series-asymptotic expansions, we derive the normal form equation of the original governing nonlinear partial differential equations. By writing the normal form equation into a first-order dynamical system and with the help of the phase plane, we manage to solve two boundary-value problems analytically. The explicit solution expressions (in terms of integrals) are obtained. By analyzing the solutions, we find that the width of the localization zone depends on the material parameters but remains almost unchanged for the same material in the post-peak region. Also, it is found that when the radius–length ratio is relatively small there is a snap-back phenomenon. These results are well in agreement with the experimental observations. Through an energy analysis, we also deduce the preferred configuration and give a prediction when a snap-through can happen. Finally, based on the maximum-energy-distortion theory, an analytical criterion for the onset of material failure is provided.  相似文献   

14.
Yeast cells can be regarded as micron-sized and liquid-filled cylindrical shells. Owing to the rigid cell walls, yeast cells can bear compressive forces produced during the biotechnological process chain. However, when the compressive forces applied on the yeast go beyond a critical value, mechanical buckling will occur. Since the buckling of the yeast can change the networks in its cellular control, the experimental research of the buckling of the yeast has received considerable attention recently. In this paper, we apply a viscoelastic shell model to study the buckling of the yeast. Meanwhile, the turgor pressure in the yeast due to the internal liquid is taken into account as well. The governing equations are based on the first-order shear deformation theory. The critical axial compressive force in the phase space is obtained by the Laplace transformation, and the Bellman numerical inversion method is then applied to the analytical result to obtain the corresponding numerical results in the physical phase. The concepts of instantaneous critical buckling force, durable critical buckling force, and delay buckling are set up in this paper. And the effects of the transverse shear deformation and the turgor pressure on the buckling phenomena are also given. The numerical results show that the transverse shearing effect will decrease the instantaneous critical buckling force and the durable critical buckling force, while the turgor pressure will increase both of them.  相似文献   

15.
In the present work we propose a new thermomechanically coupled material model for shape memory alloys (SMA) which describes two important phenomena typical for the material behaviour of shape memory alloys: pseudoelasticity as well as the shape memory effect. The constitutive equations are derived in the framework of large strains since the martensitic phase transformation involves inelastic deformations up to 8%, or even up to 20% if the plastic deformation after the phase transformation is taken into account. Therefore, we apply a multiplicative split of the deformation gradient into elastic and inelastic parts, the latter concerning the martensitic phase transformation. An extended phase transformation function has been considered to include the tension–compression asymmetry particularly typical for textured SMA samples. In order to apply the concept in the simulation of complex structures, it is implemented into a finite element code. This implementation is based on an innovative integration scheme for the existing evolution equations and a monolithic solution algorithm for the coupled mechanical and thermal fields. The coupling effect is accurately investigated in several numerical examples including pseudoelasticity as well as the free and the suppressed shape memory effect. Finally, the model is used to simulate the shape memory effect in a medical foot staple which interacts with a bone segment.  相似文献   

16.
The model of nonlinear deformation of shape memory alloys (SMA) is generalized to the case in which the possible structural transition in the reverse martensitic transformation is taken into account. The statement of active thermomechanical processes of proportional variation in the stress deviatoric components is justified. The problem of buckling on an SMA bar due to the reverse martensitic transformation is solved. It is shown that taking account of the structural transition under buckling in the process of reverse transformation significantly changes the solution of this problem.  相似文献   

17.
Recent experiments revealed many new phenomena of the macroscopic domain patterns in the stress-induced phase transformation of a superelastic polycrystalline NiTi tube during tensile loading. The new phenomena include deformation instability with the formation of a helical domain, domain topology transition from helix to cylinder, domain-front branching and loading-path dependence of domain patterns. In this paper, we model the polycrystal as an elastic continuum with nonconvex strain energy and adopt the non-local strain gradient energy to account for the energy of the diffusive domain front. We simulate the equilibrium domain patterns and their evolution in the tubes under tensile loading by a non-local Finite Element Method (FEM). It is revealed that the observed loading-path dependence and topology transition of do- main patterns are due to the thermodynamic metastability of the tube system. The computation also shows that the tube-wall thickness has a significant effect on the domain patterns: with fixed material properties and interfacial energy density, a large tube-wall thickness leads to a long and slim helical domain and a severe branching of the cylindrical-domain front.  相似文献   

18.
提出具有变形主动驱动作用的SMA纤维混杂复合材料单闭室薄壁截面梁的力-位移本构关系模型.基于变分渐近法导出具有SMA主动纤维的复合材料薄壁空心梁的二维截面刚度系数以及截面内力(矩)与位移(转角)关系方程,含SMA纤维层合板材料性能由混合率进行预测.基于Tanaka的SMA应力应变关系以及Lin的线性相变动力模型,导出了SMA诱发的轴力、扭矩与弯矩的数学表达式.由该文建立的具有拉伸-扭转-弯曲静变形耦合的一般公式出发,讨论周向均匀刚度配置以及周向反对称刚度配置特殊情形,并给出了简化的本构方程.在不考虑SMA纤维含量和温度变化的情况下,本文的模型可以退化为普通纤维复合材料单闭室薄壁截面梁的已有结果.通过数值计算揭示了SMA对弯曲-扭转静变形特性的作用规律,分析了SMA纤维含量、驱动温度和复合材料铺层角的影响.  相似文献   

19.
Based on the knowledge of the anisotropy associated with the martensitic transformations obtained from tension/compression experiments with oriented CuAlNi single crystals, a simple constant stress averaging approach is employed to model the SMA polycrystal deformation behaviors. Only elastic and inelastic strains due to the martensitic transformation, variant reorientations in the martensite phase and martensite to martensite transformations in thermomechanical loads are considered. The model starts from theoretical calculation of the stress-temperature transformation conditions and their orientation dependence from basic crystallographic and material attributes of the martensitic transformations. Results of the simulations of the NiTi, NiAl, and Cu-based SMA polycrystals in stress–strain tests are shown. It follows that SMA polycrystals, even with randomly oriented grains, typically exhibit tension/compression asymmetry of the shape of the pseudoelastic σε curves in transformation strain, transformation stress, hysteresis widths, character of the pseudoelastic flow and in the slope of temperature dependence of the transformation stresses. It is concluded that some macroscopic features of the SMA polycrystal behaviors originate directly from the crystallography of the undergoing MT's. The model shows clearly the crystallographic origin of these phenomena by providing a link from the crystallographic and material attributes of martensitic transformations towards the macroscopic σεT behaviors of SMA polycrystals.  相似文献   

20.
In this paper uniform asymptotic expansions for the solutions of a system of differential equations are obtained in the domain containing a shock wave. It is shown, in particular, that the function θ(t,x)/ε contained in the expansions and describing the behavior of the solution in the neighborhood of the wave front has, generally speaking, a discontinuity of derivatives at the front. The results are applicable to one-dimensional problems in gas dynamics with low viscosity and heat-conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号