首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A shooting technique for calculating the bifurcation curves of periodic solutions is described in this paper. This method is applied to the simple pendulum system leading to a parameter space divided into numerous regions of different attractors, and the results obtained are compared with available harmonic balance solutions. The coexistence of two or more periodic attractors is indicated, and a fractal attracting basin structure is revealed.  相似文献   

2.
We show that chaotic attractors are rarely found in multistable dissipative systems close to the conservative limit. As we approach this limit, the parameter intervals for the existence of chaotic attractors as well as the volume of their basins of attraction in a bounded region of the state space shrink very rapidly. An important role in the disappearance of these attractors is played by particular points in parameter space, namely, the double crises accompanied by a basin boundary metamorphosis. Scaling relations between successive double crises are presented. Furthermore, along this path of double crises, we obtain scaling laws for the disappearance of chaotic attractors and their basins of attraction.  相似文献   

3.
Orbits initialized exactly on a basin boundary remain on that boundary and tend to a subset on the boundary. The largest ergodic such sets are called basic sets. In this paper we develop a numerical technique which restricts orbits to the boundary. We call these numerically obtained orbits “straddle orbits”. By following straddle orbits we can obtain all the basic sets on a basin boundary. Furthermore, we show that knowledge of the basic sets provides essential information on the structure of the boundaries. The straddle orbit method is illustrated by two systems as examples. The first system is a damped driven pendulum which has two basins of attraction separated by a fractal basin boundary. In this case the basic set is chaotic and appears to resemble the product of two Cantor sets. The second system is a high-dimensional system (five phase space dimensions), namely, two coupled driven Van der Pol oscillators. Two parameter sets are examined for this system. In one of these cases the basin boundaries are not fractal, but there are several attractors and the basins are tangled in a complicated way. In this case all the basic sets are found to be unstable periodic orbits. It is then shown that using the numerically obtained knowledge of the basic sets, one can untangle the topology of the basin boundaries in the five-dimensional phase space. In the case of the other parameter set, we find that the basin boundary is fractal and contains at least two basic sets one of which is chaotic and the other quasiperiodic.  相似文献   

4.
We show a type of unpredictability of the Wada property in the parameter plane for fixed initial conditions. This property indicates a larger unpredictability of sensitive dependence on parameters except for the riddled parameter sets. We describe some numerical experiments giving evidences of the parameter Wada property for different types of attractors including strange nonchaotic attractors. A scaling exponent is used to characterize sensitive dependence on parameters. We present a qualitative explanation on the occurrence of the Wada property in the parameter plane.  相似文献   

5.
In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We identify periodic and chaotic attractors by their largest Lyapunov exponents.  相似文献   

6.
We analyze the nonlinear dynamics of a high-finesse optical cavity in which one mirror is mounted on a flexible mechanical element. We find that this system is governed by an array of dynamical attractors, which arise from phase locking between the mechanical oscillations of the mirror and the ringing of the light intensity in the cavity. We develop an analytical theory to map out the diagram of attractors in parameter space, derive the slow amplitude dynamics of the system, including thermal fluctuations, and suggest a scheme for exploiting the dynamical multistability in the measurement of small displacements.  相似文献   

7.
We report a new test of the gravitational inverse square law at millimeter ranges by using a dual-modulation torsion pendulum. An I-shaped symmetric pendulum and I-shaped symmetric attractors were adopted to realize a null experimental design. The non-Newtonian force between two macroscopic tungsten plates is measured at separations ranging down to 0.4 mm, and the validity of the null experimental design was checked by non-null Newtonian gravity measurements. We find no deviations from the Newtonian inverse square law with 95% confidence level, and this work establishes the most stringent constraints on non-Newtonian interaction in the ranges from 0.7 to 5.0 mm, and a factor of 8 improvement is achieved at the length scale of several millimeters.  相似文献   

8.
We address the problem of controlling chaotic motion and deterministic directed transport in inertia ratchets. We employ a recursive backstepping nonlinear control technique to control intermittent chaos and then track a desired trajectory by means of the same technique. For the parameter regime where two non-identical attractors coexist in phase space, we propose a new backstepping control scheme that is capable of controlling the directed transport exhibited by these attractors. Numerical simulations show that the controllers are singularity free and the closed-loop systems are globally stable.  相似文献   

9.
We study non-elastic billiard dynamics in an equilateral triangular table. In such dynamics, collisions with the walls of the table are not elastic, as in standard billiards; rather, the outgoing angle of the trajectory with the normal vector to the boundary at the point of collision is a uniform factor λ < 1 smaller than the incoming angle. This leads to contraction in phase space for the discrete-time dynamics between consecutive collisions, and hence to attractors of zero Lebesgue measure, which are almost always fractal strange attractors with chaotic dynamics, due to the presence of an expansion mechanism. We study the structure of these strange attractors and their evolution as the contraction parameter λ is varied. For λ∈(0,1/3), we prove rigorously that the attractor has the structure of a Cantor set times an interval, whereas for larger values of λ gaps arise in the Cantor structure. For λ close to 1, the attractor splits into three transitive components, whose basins of attraction have fractal boundaries.  相似文献   

10.
徐培民  闻邦椿 《中国物理》2004,13(5):618-624
A simple branch of solution on a bifurcation diagram, which begins at static bifurcation and ends at boundary crisis (or interior crisis in a periodic window), is generally a period-doubling cascade. A domain of solution in parameter space, enclosed by curves of static bifurcation and that of boundary crisis (or the interior of a periodic window), is the trace of branches of solution. A P-n branch of solution refers to the one starting from a period-n (n≥1) solution, and the corresponding domain in parameter space is named the P-n domain of solution. Because of the co-existence of attractors, there may be several branches within one interval on a bifurcation diagram, and different domains of solution may overlap each other in some areas of the parameter space. A complex phenomenon, concerned both with the co-existence of attractors and the crises of chaotic attractors, was observed in the course of constructing domains of steady state solutions of the Hénon map in parameter space by numerical methods. A narrow domain of period-m solutions firstly co-exists with (lies on) a big period-n (m≥3n) domain. Then it enters the chaotic area of the big domain and becomes period-m windows. The co-existence of attractors disappears and is called the landing phenomenon. There is an interaction between the two domains in the course of landing: the chaotic area in the big domain is enlarged, and there is a crisis step near the landing area.  相似文献   

11.
Dynamic behavior of a weightless rod with a point mass sliding along the rod axis according to periodic law is studied. This is the pendulum with periodically varying length which is also treated as a simple model of a child’s swing. Asymptotic expressions for boundaries of instability domains near resonance frequencies are derived. Domains for oscillation, rotation, and oscillation-rotation motions in parameter space are found analytically and compared with a numerical study. Chaotic motions of the pendulum depending on problem parameters are investigated numerically.  相似文献   

12.
Melnikov's method is applied to the planar double pendulum proving it to be a chaotic system. The parameter space of the double pendulum is discussed, and the integrable cases are identified. In the neighborhood of the integrable case of two uncoupled pendulums Melnikov's integral is evaluated using residue calculus. In the two limiting cases of one pendulum becoming a rotator or an oscillator, the parameter dependence of chaos, i.e. the width of the separatrix layer is analytically discussed. The results are compared with numerically computed Poincaré surfaces of section, and good agreement is found.  相似文献   

13.
We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.  相似文献   

14.
The steady state distribution functional of the supercritical complex Ginzburg-Landau equation with weak noise is determined asymptotically for long-wave-length fluctuations including the phaseturbulent regime. This is done by constructuring a non-equilibrium potential solving the Hamilton-Jacobi equation associated with the Fokker-Planck equation. The non-equilibrium potential serves as a Lyapunov functional. In parameter space it consists of two branches which are joined at the Benjamin-Feir instability. In the Benjamins-Feir stable regime the non-equilibrium potential has minima in the plane-wave attractors and our result generalizes to arbitrary dimension an earlier result for one dimension. Beyond the Benjamin-Feir instability the potential in the function space has a minimum which is degererate with respects to arbirary long-wavelength phase variations. The dynamics on the minimum set obey the generalized Kuramoto-Sivashinsky equation.  相似文献   

15.
Given a set of experimental or numerical chaotic data and a set of model differential equations with several parameters, is it possible to determine the numerical values for these parameters using a least-squares approach, and thereby to test the model against the data? We explore this question (a) with simulated data from model equations for the Rossler, Lorenz, and pendulum attractors, and (b) with experimental data produced by a physical chaotic pendulum. For the systems considered in this paper, the least-squares approach provides values of model parameters that agree well with values obtained in other ways, even in the presence of modest amounts of added noise. For experimental data, the "fitted" and experimental attractors are found to have the same correlation dimension and the same positive Lyapunov exponent. (c) 1996 American Institute of Physics.  相似文献   

16.
The parametrically driven, damped, inverted pendulum can be dynamically stabilized in particular regions of the parameter space. The impact of damping on dynamic stabilization can be stabilizing or destabilizing depending on the location in parameter space (i.e., drive frequency and amplitude). Floquet analysis and numerical simulations were used to determine the stable regions. An experiment was conducted that verifies the model. Physical explanations and simple bounding approximations are provided to summarize findings. The utility of the highly damped pendulum results are illustrated by drawing the analogy to dynamic stabilization of the Rayleigh-Taylor instability: it permits ready demonstration that dynamic stabilization is impossible in that system absent surface tension.  相似文献   

17.
Some dynamical properties for a dissipative kicked rotator are studied. Our results show that when dissipation is taken into account a drastic change happens in the structure of the phase space in the sense that the mixed structure is modified and attracting fixed points and chaotic attractors are observed. A detailed numerical investigation in a two-dimensional parameter space based on the behavior of the Lyapunov exponent is considered. Our results show the existence of infinite self-similar shrimp-shaped structures corresponding to periodic attractors, embedded in a large region corresponding to the chaotic regime.  相似文献   

18.
We consider the dynamics of a number of externally excited chaotic oscillators suspended on an elastic structure. We show that for the given conditions of oscillations of the structure, initially uncorrelated chaotic oscillators become periodic and synchronous in clusters. In the periodic regime, we have observed multistability as two or four different attractors coexist in each cluster. A mismatch of the excitation frequency in the oscillators leads to the beating-like behaviour. We argue that the observed phenomena are generic in the parameter space and independent of the number of oscillators and their location on the elastic structure.  相似文献   

19.
We have obtained a general unstable chaotic solution of a typical nonlinear oscillator in a double potential trap with weak periodic perturbations by using the direct perturbation method. Theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractors. The corresponding chaotic region and orbits in parameter space are described by numerical simulations.  相似文献   

20.
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware–software co-simulation and the results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号