首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Radioanalytical and Nuclear Chemistry - Mn–Zn ferrite nanoparticles for magnetic hyperthermia applications were synthesized by a high temperature thermal decomposition method. The...  相似文献   

2.
Three one-dimensional metal–nitroxide complexes [Cu(NIT4Py)2(1,4-chdc)] n (1), {[Cu(IM4Py)2(1,4-chdc)(H2O)]·H2O} n (2) and {[Zn(IM4Py)2(1,4-chdc)(H2O)2]·H2O} n (3) (NIT4Py = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, IM4Py = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl and 1,4-chdc = 1,4-cyclohexanedicarboxylate anion) have been synthesized and characterized structurally as well as magnetically. All three complexes crystallize in neutral one-dimensional chains in which the nitroxide–metal–nitroxide units are linked by linear 1,4-cyclohexanedicarboxylate anions. The 1,4-chdc ligands only present the e,e-trans-configuration in these complexes, although there are both cis- and trans-isomers in the free ligand. Magnetic measurements show that complexes 1 and 2 both exhibit weak antiferromagnetic interactions between the copper atoms and nitroxide radicals.  相似文献   

3.
Four new one-dimensional coordination polymers [Co(IM4Py)2(adi)(H2O)2] n , [Zn(IM4Py)2(adi)(H2O)2] n , [Cd(IM4Py)2(adi)(H2O)2] n , and [Ni(IM4Py)2(glu)(H2O)2] n (IM4Py = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl, adi = adipate anion and glu = glutarate anion) were synthesized and structurally characterized. The single-crystal X-ray analyses indicate that all four complexes crystallize in neutral one-dimensional chains in which the nitroxide–metal–nitroxide units are bridged by the flexible dicarboxylate anions. The adipate anions adopt the anti/gauche/anti and anti/anti/anti conformations in the Co(II), Zn(II), and Cd(II) complexes, while the glutarate anions only possess the anti/anti conformation in the Ni(II) complex. The magnetic properties of the Co(II) and Ni(II) complexes show the occurrence of weak antiferromagnetic interactions between the metal atoms and the nitroxide radicals.  相似文献   

4.
To relate the mechanical responses of hard–soft copolymer systems with their microstructures, a coarse-grained molecular dynamics approach is employed, and mechanical properties of both hard and soft domains are calculated. We first investigate the enhancement mechanism of hard domains under tensile and shear loading conditions with pressure. The energy factor that denotes the interaction between hard beads dominates the microphase separation and morphology. Our numerical experiments show that pressure is the most crucial factor in shear-under-pressure tests, with larger pressure leading to higher shearing resistance of the copolymers. The viscoelastic behaviors of hard–soft copolymers are computed from the stress autocorrelation function. The stress relaxation indicates that the soft matrix is in a rubbery state at room temperature while hard domains are “glass-like” and can be viewed as elastic solids in a macroscale model. In addition, local elastic constants of hard domains are computed using the stress–strain fluctuation method with purely local stress and local strain. Those results can be used as inputs for macroscale models for copolymers and can provide guidelines for designing polymeric materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1552–1566  相似文献   

5.
6.
Water appears as a common intermediary in the mechanisms of interaction of proteins and polypeptides with membranes of different lipid composition. In this review, how water modulates the interaction of peptides and proteins with lipid membranes is discussed by correlating the thermodynamic response and the structural changes of water at the membrane interphases.  相似文献   

7.
Iron–sulfur clusters of diverse nuclearities constitute the active sites of a large and prominent family of metalloproteins which play essential roles in all living organisms, such as in electron transfer chains, reduction catalysis, photosynthesis, the respiratory chain and nitrogen fixation. This review is devoted to the presentation of the current state of understanding of their electronic and magnetic properties, which is here derived from their Mössbauer, EPR and ENDOR spectroscopic properties. These techniques constitute fine tools for characterization and provide knowledge of the different oxidation states of these proteins, although our interest here will be mainly centered on the [4Fe–4S*]n+ clusters (with n=1–3). A qualitative physical model involving the competing magnetic interactions in these clusters is discussed. Moreover, this article contains new developments on two more specialized subjects:
  • 1.some quantitative consequences of an already published theory of the g-tensors of [4Fe–4S*]n+ clusters (n=1,3) will be derived in Section 3;
  • 2.a model permitting the rationalization, from very simple ingredients and formulae, of the redox potentials of a whole set of known synthetic redox clusters (with 1, 2, 3, 4 and 6 iron atoms) will be presented in the final Section 6.
  相似文献   

8.
The magnetic hard-soft CoFe2O4–CoFe2 nanocomposite microfibers have been synthesized by the sol–gel and partial reduction process, where CoFe2O4 ferrite is the hard phase with a grain size range from 43 to 62 nm and CoFe2 alloy the soft phase with grain sizes around 30 nm. These nanocomposite microfibers exhibit the magnetization behavior like a single phase magnetic material, and the magnetic exchange coupling effects are observed between the hard and soft phases. The specific saturation magnetization of CoFe2O4–CoFe2 nanocomposite microfibers shows an increase tendency with the increasing weight fraction of CoFe2, while the coercivity is consequently reduced. The nanocomposite microfibers have a maximum remanence 51.7 Am2/kg when the phase contents of CoFe2 around 28 wt% and CoFe2O4 about 72 wt%.  相似文献   

9.
《Polyhedron》2003,22(14-17):2133-2138
The crystal of the hexanuclear wheel-shaped complex, [CuCl2·(4PMNN)]6 (1), has a channel structure in a direction perpendicular to the molecular plane (4PMNN=4-pyrimidinyl nitronyl nitroxide). Excess LiCl, NaCl, or KCl added to a methanol solution of 1 yielded the corresponding guest-included compounds, (LiCl)6@1, (NaCl)2@1, and (KCl)2@1. The inclusion of the guests was confirmed by means of elemental analysis and X-ray diffraction study. The crystallographic c length and the cell volume were slightly shrunk by the guest inclusion. The ferromagnetic interaction, which is ascribed to intermolecular contacts between the nitronyl nitroxide groups, was remarkably enhanced almost in proportion to the cell shrinkage. Similar enhancement was observed for the host–guest complexes from the bromide analogue [CuBr2·(4PMNN)]6]. The crystallization in the presence of water gave (H2O)n@1. In addition to enhancement of the ferromagnetic interaction of (H2O)n@1, we found that the ferromagnetic interaction decreased back to a level of that of the empty 1 after removal of H2O by evacuation.  相似文献   

10.
Two new lanthanide–radical complexes, [Tb(hfac)3(EtVNIT)2] (1) and [Dy(hfac)3(EtVNIT)2] (2) (EtVNIT?=?2-(4′-ethoxy-3′-methoxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, hfac?=?1,1,1,5,5,5-hexafluoroacetylacetonate), were synthesized; both display radical–Ln(III)–radical (Ln=Tb (1), Dy (2)) tri-spin structures. Magnetic studies reveal that interactions between the lanthanide ions and radicals are ferromagnetic.  相似文献   

11.
The paramagnetic dinuclear complexes 1,8-bis(cobaltocenyl)naphthalene (2) and 1,8-bis[(pentamethyl-η(5)-cyclopentadienyl)(η(5)-cyclopentadiendiyl)cobalt(II)]naphthalene (4) were synthesized. The molecular structures were characterized by X-ray structure analysis and consisted of two cobaltocenes linked through a distorted naphthalene clamp. Electronic interactions between the two cobalt atoms were observed by cyclic voltammetric studies. Superconducting quantum interference device (SQUID) measurements of the pure compounds and diluted in their diamagnetic iron derivatives, as well as variable-temperature NMR spectroscopy experiments in solution are presented. Magnetic measurements revealed an antiferromagnetic coupling of the electrons in complexes 2 and 4. From NMR spectroscopy experiments, Curie behavior in the temperature range from -60 to +60 °C can be deduced. The electronic structure and magnetic behavior is supported by results of broken-symmetry DFT and multireference calculations along with UV/Vis spectroscopic data, which revealed an intramolecular through space π-π interaction between the cobaltocene units.  相似文献   

12.
Mn–Zn ferrite was prepared from the solution after acid leaching of spent batteries by co-precipitation method using ammonia oxalate, sodium carbonate and sodium hydroxide as precipitating agents. The co-precipitation process was performed at temperature of over 50 °C by continuous magnetic stirring. The precipitates were pre-sintered at 850 °C in air. Dilatometric study has revealed that lowest shrinkage (only 5.6%) showed a material obtained from an oxalate precipitant. After pressing and high-temperature sintering at 1325 °C, it showed both insufficient density and the presence of pores, which contribute to the deterioration in the magnetic properties of the ferrites: the low magnetic permeability value and high magnetic losses. Ferrite prepared from hydroxide and carbonate precipitant showed a much higher shrinkage, sintered density and much higher magnetic permeability compared with the ferrite prepared from oxalate precursor.  相似文献   

13.
Nanocrystalline nickel–molybdenum (Ni–Mo) alloy thin films were electrochemically synthesized in acidic and alkaline aqueous solutions. Transmission electron microscope bright-field images and electron diffraction patterns of the electrodeposits made it obvious that pure Ni consists of a submicron crystalline phase with the grain diameter of several hundred nanometers, while Ni–20 %Mo alloy was composed of a nanocrystalline phase with the grain diameter of a few nanometers. It was estimated that the nanocrystalline phase of electrodeposited Ni–Mo alloy thin films was introduced by the formation of supersaturated Ni–Mo solid solution phase with Mo content in the deposit more than 20 %. Submicron crystalline pure Ni thin films were hardly magnetized in perpendicular direction to the film plane while the nanocrystalline Ni–20 %Mo alloy thin films were isotropically magnetized. It was suggested that the isotropical magnetization behavior was caused by decreasing the demagnetizing field and the magneto crystalline anisotropy with a decrease in the magnetic moment and the average crystal grain size. Coercive force of a submicron crystalline pure Ni thin film electrodeposited from an acidic aqueous solution was ca. 100 Oe while that of a nanocrystalline Ni–20 %Mo alloy thin film electrodeposited from an alkaline aqueous solution was only 1~2 Oe. Soft magnetic properties of Ni–Mo alloy thin films electrodeposited from an alkaline aqueous solution were better than that from an acidic aqueous solution and it was improved with an increase in Mo content in the deposit. It was estimated that the electrodeposited Ni–Mo alloy catalysts could be easily recovered with magnetic field less than 1 kOe.  相似文献   

14.
This paper discusses the preparation and properties of gas detectors based on “porous silicon–nickel ferrite” nanocomposites. Impedance spectroscopy was used to measure sensitivity to ethanol and isopropanol vapours in the presence of an alternating electric field. The results were interpreted with the help of an equivalent electrical circuit. In the analysis of the resistive–capacitive properties in the equivalent circuit a constant phase element was used.  相似文献   

15.
Reaction of manganese acetate and lanthanide nitrates in the presence of excess of PhCOOH affords highly asymmetric dodecanuclear mixed-metal [Mn10Ln2(OH)(O)8(PhCOOH)(PhCOO)19] (Ln = PrIII (1), NdIII (2)) clusters. The similar reaction, but with only 2 equiv. of PhCOOH resulted in the compounds with higher nuclearity [Mn11Eu4(O)8(OH)8(PhCOO)18(NO3)2(H2O)6]NO3 · 4CH3CN (3). Variable-temperature solid-state magnetic susceptibility of 1 and 2 in the temperature range 1.8–300 K were carried out, and for both complexes antiferromagnetic exchange interactions between the metal centers were observed, giving an estimated S = 17/2 ground state. AC magnetic susceptibility data have revealed out-of-phase signals, which suggest that these complexes exhibit a slow relaxation of magnetization as observed in single-molecule magnets.  相似文献   

16.

The superiority of NiMnSn alloy on NiMnGa alloy is far ahead in term of some physical characteristics, and therefore, the development of this alloy group is very important. In this work, Ni50Mn45−xSn5Crx magnetic shape memory alloys were produced for x = 0, 4, 6, 10 and 12. Thermal analysis was performed on produced alloys in a wide range (200–1000 °C) by using differential scanning calorimetry, thermogravimetric and differential thermal analysis. According to the thermal analysis results, the austenite ↔ martensite transformation temperatures of the NiMnSn alloy decreased with increasing chromium content. Furthermore, the increase in the chromium ratio caused single-phase transformation due to the multiple phase transformation that was observed in the NiMnSn alloy. In addition, the crystal structure and microstructure analyses of the alloys were determined by using X-ray diffraction and scanning electron microscopy–energy-dispersive X-ray spectroscopy. In all cases, martensite and gamma phase were encountered and the gamma phase ratio was found to be increased by chromium addition. The magnetization characteristics were studied by using physical properties measurement systems device, and it was found that the alloys have a considerably small response to magnetic flux.

  相似文献   

17.
The use of mass spectrometry to study protein-ligand interactions is expanding into more complex systems including protein-DNA interactions. The excess amount of a model DNA or, more typically, an oligodeoxynucleotide (ODN), needed to study such interactions in an amide hydrogen-deuterium (H/D) exchange experiment, for example, causes serious signal suppression in the protein analysis. We describe here a modification of the traditional H/D exchange protocol whereby we utilize a strong anion exchange column to rapidly remove the ODN from solution before MS analysis. We showed the successful incorporation of such a column in a study of two protein-ODN systems: (1) the DNA-binding domain of human telomeric repeat binding factor 2 with a telomeric oligodeoxynucleotide and (2) thrombin with the thrombin-binding aptamer. The approach gave no appreciable difference in back-exchange compared to a method in which no strong anion exchange (SAX) is used.  相似文献   

18.
An efficient superparamagnetic Pd–ZnFe2O4 solid catalyst has been synthesized by loading Pd(0) species on zinc ferrite nanoparticles. Sonogashira cross couplings between terminal alkynes and aryl halides were achieved in the absence of any Cu co-catalyst. A Heck–Matsuda coupling reaction of structurally different aryldiazonium tetrafluoroborate substrates was preceded at 40 °C in water. Cyanation of aryl halides was successfully done using K4[Fe(CN)6] as the cyanide source over Pd–ZnFe2O4. The catalyst was also employed for Ullmann type cross coupling reactions. Excellent yield of the products, reusability, and uncomplicated work-up make this catalyst efficient for C–C and C–O coupling reactions. Good yield of products, easy separation, and negligible leaching of Pd from the catalyst surface confirm the true heterogeneity in these catalytic reactions.  相似文献   

19.
20.
Journal of Thermal Analysis and Calorimetry - In this work, some physical properties of a commercial Ni–Ti (nitinol) shape-memory alloy with cylindrical geometry (wire) were investigated; the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号