首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complex Robert–Bonamy (CRB) formalism was used to calculate the half-width, its temperature dependence, and the line shift for CO2 for transitions in the 30012←00001 and 30013←00001 bands with O2 as the perturbing gas. The calculations were done for rotational quantum numbers from J=0 to J=120 with no ad hoc scaling of the line shape equations. The intermolecular potential parameters are adjusted on accurate experimental measurements of the half-widths, its temperature dependence, and the pressure-induced line shifts so that a single intermolecular potential reproduces all three parameters. Using the results of this work and previous results for N2-broadening, air-broadening line shape parameters were also determined. The comparison of the CRB calculations with the experimental data available in the literature for the three line shape coefficients demonstrates the quality of the present calculations for the both bands under study.  相似文献   

2.
This paper is the third in a series devoted to accurate semi-empirical calculations of pressure-broadened half-widths, pressure-induced line shifts, and the temperature dependence of the half-widths of carbon dioxide. In this work complex Robert–Bonamy (CRB) calculations were made for transitions in two of the Fermi-tetrad bands for self-collisions, i.e. the CO2–CO2 system. The intermolecular potential (IP) was adjusted to match measurements of the half-width, its temperature dependence, and the line shift. It is shown that small changes in the parameters describing the IP lead to noticeable changes in the line shape parameters and that it is possible to find a set of IP parameters, which, when used in the CRB formalism, yield half-widths, their temperature dependence, and line shifts in excellent agreement with measurement. This work demonstrates that this agreement can be obtained if the atom–atom potential is expanded to high order and rank (here 20 4 4), the real and imaginary (S1 and Im(S2)) components are retained, and the determination of the trajectories is made by solving Hamilton's equations. It was found that the temperature dependence of the half-width is sensitive to the range of temperatures used in the fit and that the vibrational dependence of the line shape parameters for these two bands is very small. Databases of the half-width, its temperature dependence, and the line shift for the atmospheres of Venus (296–700 K fit range for the temperature exponents of the half-widths) and Mars (125–296 K fit range for the temperature exponents of the half-widths) are provided. The calculations are compared with the measured data for the bands under study.  相似文献   

3.
The line strengths, N2? and O2-broadened half-widths in the ν3, ν1+2ν2 and 2ν1 bands of 14N2 16O were determined from spectra obtained by a high-resolution Fourier transform spectrometer at room temperature. The squared vibrational transition dipole moments and the coefficients of the Herman–Wallis factor were also determined for these bands. The squared vibrational transition dipole moments for these bands agreed with the values of HITRAN and high-resolution experiments within 6%. The N2? and O2-broadened half-widths were in agreement with the results of recent high-resolution experiments. The air-broadened half-widths were calculated using the smoothed N2? and O2-broadened half-widths and compared with the compiled values in the HITRAN database.  相似文献   

4.
The goal of this study is to achieve absolute line intensities for the strong 5.7 and 3.6 μm bands of formaldehyde and to generate, for both spectral regions, an accurate list of line positions and intensities. Both bands are now used for the infrared measurements of this molecule in the atmosphere. However, in the common access spectroscopic databases there exists, up to now, no line parameters for the 5.7 μm region, while, at 3.6 μm, the quality of the line parameters is quite unsatisfactory. High-resolution Fourier transform spectra were recorded for the whole 1600–3200 cm?1 spectral range and for different path-length-pressure products conditions. Using these spectra, a large set of H2CO individual line intensities was measured simultaneously in both the 5.7 and 3.6 μm spectral regions. From this set of experimental line strength which involve, at 5.7 μm the ν2 band and, at 3.6 μm, the ν1 and ν5 bands together with nine dark bands, it has been possible to derive a consistent set of line intensity parameters for both the 5.7 and 3.6 μm spectral regions. These parameters were used to generate a line list in both regions. For this task, we used the line positions generated in [Margulés L, Perrin A, Janeckovà R, Bailleux S, Endres CP, Giesen TF, et al. Can J Phys, accepted] and [Perrin A, Valentin A, Daumont L, J Mol Struct 2006;780–782:28–42] for the 5.7 and 3.6 μm, respectively. The calculated band intensities derived for the 5.7 and 3.6 μm bands are in excellent agreement with the values achieved recently by medium resolution band intensity measurements. It has to be mentioned that intensities in the 3.6 μm achieved in this work are on the average about 28% stronger than those quoted in the HITRAN or GEISA databases. Finally, at 3.6 μm the quality of the intensities was significantly improved even on the relative scale, as compared to our previous study performed in 2006.  相似文献   

5.
We have made line-strength measurements in the N2O ν3-fundamental region using a tunable diode-laser spectrometer. From these measurements and the Herman-Wallis factor determined by Boissy et al., we find the ν3-fundamental band strength to be Sv = 1203 ± 22 cm−2 atm−1 at 297 K. Line-broadening parameters for two ν3-fundamental lines were determined using nitrogen (N2) as the broadening gas. Measured strengths and N2 line-broadening parameters for several (ν12 + ν3ν12) hot-band lines are also presented.  相似文献   

6.
7.
The Fourier transform spectra measured using the multiple reflection absorption cell with a path length of 192 m are reported for the high-J transitions of the ν2 bands of 14NH3 and 15NH3. More than 400 transitions which have been assigned for the first time in both 14NH3 and 15NH3 represent nearly 100% extension of the ν2 data.  相似文献   

8.
ABSTRACT

We report experimental results on the broadening and shifting coefficients in a large interval of J quantum numbers in the fundamental and first overtone vibration–rotation bands of the HCl molecule in mixtures with helium. Many of the values, especially for the overtone transition, are novel. The uncertainties for the isotope-averaged broadening coefficients amount to 2% on average for the fundamental and 1.5% for the overtone bands. Shifts have a typical uncertainty of 3%.  相似文献   

9.
Spectral measurements of two line pairs of CO2 and CO in the temperature range 300–1000 K at 1.573 µm were performed using a fiber-coupled distributed feedback (DFB) diode laser. The two line pairs can be used in a tunable diode laser (TDL) absorption sensor for simultaneously detecting CO2 and CO gas in a single scan of the diode laser. The spectral parameters (line strengths, air-broadening coefficients and the temperature exponent n) of the two pairs are presented. The measured data agree well with existing databases (HITRAN 2004 and HITRAN 2008), the discrepancies being less than 5% for most of the probed transitions. Although the HITRAN database is a useful tool for sensor design, we found that laboratory measurements of the spectroscopic data for the line pair selected for high-temperature sensors are necessary for establishing the uncertainty for accurate measurements.  相似文献   

10.
Spectra of the weakly bound CO2–C2H2 and CO2–C2D2 complexes are observed in the regions of CO2 ν3 (≈ 2349 cm?1) and C2D2 ν3 (≈ 2440 cm?1) fundamental vibrations, using an infrared optical parametric oscillator to probe a pulsed supersonic slit-jet expansion. Five bands are measured and analysed: the fundamental asymmetric stretch of the C2D2 component, two combination bands involving the out-of-plane torsional vibrations (C2D2 ν3 + torsion and CO2 ν3 + torsion) for CO2–C2D2, and two combination bands involving an intermolecular in-plane bending vibration for CO2–C2H2 and CO2–C2D2. The resulting intermolecular frequencies are 61.408(1), 54.5(5), 39.9(5), and 39.961(1) cm?1 for CO2–C2H2 and CO2–C2D2 in-plane vibrations, and CO2–C2D2 out-of-plane torsional vibrations in CO2 and C2D2 regions, respectively. This is the first experimental determination of these intermolecular vibrational frequencies.  相似文献   

11.
Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2←0 band of 12C16O from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high-purity (≥99.5% 12C-enriched) CO samples and CO diluted with dry air (research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298 K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman–Wallis coefficients), rather than determining individual line positions and intensities. Self- and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air- line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.  相似文献   

12.
13.
Hydrofluorocarbons have been used as replacement gases of chlorofluorocarbons, since the latter have been phased out by the Montreal Protocol due to their environmental hazardous ozone-depleting effects. This is also the case of difluoromethane (CH2F2, HFC-32), which nowadays is widely used in refrigerant mixtures together with CF3CH3, CF3CH2F, and CF3CHF2. Due to its commercial use, in the last years, the atmospheric concentration of HFC-32 has increased significantly. However, this molecule presents strong absorptions within the 8–12 μm atmospheric window, and hence it is a greenhouse gas which contributes to global warming. Although over the years several experimental and theoretical investigations dealt with the spectroscopic properties of CH2F2, up to now pressure broadening coefficients have never been determined. In the present work, the line-by-line parameters of CH2F2 are retrieved for either ground state or ν7 band transitions by means of microwave (MW) and infrared (IR) absorption spectroscopy, respectively. In particular, laboratory experiments are carried out on 9 pure rotational transitions of the ground state and 26 ro-vibrational transitions belonging to the ν7 band lying around 8.2 μm within the atmospheric region. Measurements are carried out at room temperature on self-perturbed CH2F2 as well as on CH2F2 perturbed by N2 and O2. The line shape analysis leads to the first determination of self-, N2-, O2-, and air-broadening coefficients, and also of line intensities (IR). Upon comparison, broadening coefficients of ground state transitions are larger than those of the ν7 band, and no clear dependence on the rotational quantum numbers can be reported. The obtained results represent basic information for the atmospheric modelling of this compound as well as for remote sensing applications.  相似文献   

14.
A molecular dynamics method was used to calculate the pressure p* and the internal energy e* of a liquid and a crystal in stable and metastable states in a system of 2048 particles, which interaction is described by a modified Lennard—Jones potential. For the liquid phase, calculations were performed along 13 isotherms from the range of reduced temperature T* = 0.35–3.0, and for the crystal phase, along 16 isotherms from the range T* =0.1–3.0. The thermal p* = p*(ρ*,T*) and caloric e* = e*(ρ*,T*) equations of state for liquids and crystals have been constructed. The parameters of crystal-liquid phase equilibrium have been determined from the conditions of phases coexistence at positive pressures and in the region of negative pressures, where the coexistent phases are metastable. The spinodal of a stretched liquid has been approximated. It has been found that with a temperature decrease the metastable extension of the melting line meets the spinodal of the liquid phase. The point of their meeting, the endpoint of the melting curve, is the point of termination of crystal-liquid phase equilibrium without the onset of identity of the phases.  相似文献   

15.
16.
17.
Using a simple, arbitrary, but fixed procedure for the choice of sphere sizes in the overlapping sphere version of the SCF-Xα-SW method, results for the ionization potentials of CO, N2, F2, and H2O are in considerably better agreement with experiment than those of the muffin-tin version. The agreement is as good as those of the SCF-Hartree-Fock, Discrete Variational-Xα, and LCAO-Xα methods. For the first time the overlapping sphere modification has been used to calculate binding curves and results in equilibrium bond lengths for CO, N2, and F2 all within 0·3 a 0 (0·16 Å) of the experimental values, a dramatic improvement over the muffin-tin results. The variation of the calculated ionization potentials under a moderate change in the amount of sphere overlap is found to be rather small, being of the order of the differences between the DV-Xα and LCAO-Xα methods, both of which completely avoid the muffin-tin approximation.  相似文献   

18.
The impact parameter method is used to calculate the inelastic scattering cross sections of protons and antiprotons,which raise hydrogen atoms from the 2p states to the n=3 states.The calculation involves the n=1,2,3 states of the target and covers the energy range from 3keV to 2500keV.The study of the influence of the sign of the projectile charge is the main target of this investigation.Therefore,the exchange effects in the case of proton-induced reactions are ignored.The results of the calculations are in reasonable agreement with a previous work.  相似文献   

19.
Relativistic configuration interaction calculations with the inclusion of Breit interaction, quantum electrodynamics and finite nuclear mass corrections have been carried out in the extended optimal level scheme using multi-configuration Dirac-Fock wavefunctions on the wavelengths, electric dipole transition rates, line strengths and oscillator strengths of nickel. Through the use of the active space method, the calculated values are compared with the other available data on He-like and Be-like nickel and are found to be in very good agreement with them. In this paper we give accurate transition properties from NiXIX through NiXXVII. These data provide reference value for level lifetime, charge state distribution and average charge of nickel plasma. Appendix A and B are only available in electronic form at www.epj.org  相似文献   

20.
This study gives our calculation for the specific heats CVI due to an Ising model using the observed Cp data for the Ⅱ-Ⅲ and Ⅱ-VI phase transitions in NH4I.By fitting to the CP data we determine the values of the critical exponent for the pressure of 0.14GPa(Ⅱ-Ⅲ phase transition)and for the pressures of 0.75,1.35and 1.97 GPa (II-IV phase transition)in NH4I.Our exponent values values are close to the predicted values of the specific heat in a three-dimensional Ising model.Our calculated CVI are in good agreement with the experimental CP for NH4I in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号