首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A method has been developed for the synthesis of hydrated tungsten oxide hydrosols, with this method being based on potassium tungstate hydrolysis followed by peptization of the formed precipitate. The influence of the conditions of precipitation, aging, and washing of the precipitate on the particle phase composition and shape and the degree of precipitate peptization has been studied. Hydrosol-particle sizes have been determined by different methods. It has been found that the dispersed phase of the hydrosols consists mainly of platelike particles of hydrated tungsten oxide WO3 · 2H2O with a number-average size of 52 nm. The sols are stable to aggregation in a pH range of 3.0–4.5. The zeta potential of the particles ranges from–33 to–38 mV.  相似文献   

2.
The investigation into carbothermal reduction of tungsten oxides has shown that this process involves several steps: WO3 → WO2.72 → WO2 → W. The resulting oxide is rapidly reduced to tungsten metal at 950°C. The carbidization process has a diffusion mechanism. The staged character of carbothermal reduction of tungsten oxides and subsequent carbidization of tungsten are confirmed by scanning electron microscopy, which made it possible to determine the phase composition and size of the resulting particles.  相似文献   

3.
Hydrosols of hydrated tungsten trioxide WO3 ? nH2O have been synthesized via peptization of a precipitate obtained by hydrolysis of potassium tungstate. It has been shown that the resulting sols are stable to aggregation in a pH range of 3.0–4.5. Hydrodynamic diameters and ζ potentials of WO3 ? nH2O particles have been determined as functions of dispersion medium pH. In addition, their density and degree of hydration have been found for the stable sols. The thickness of particle surface layers has been estimated.  相似文献   

4.
秦玉香  包智颖  胡明  孙鹏 《无机化学学报》2010,26(12):2259-2265
采用溶剂热法以WCl6作为前体合成出了一维和二维的钨氧化物纳米结构,研究了反应溶剂和前体浓度对钨氧化物物相和形貌的影响并评价了各种钨氧化物纳米结构对NO2气体的敏感性能。XRD、SEM、TEM和XPS的表征结果表明,通过改变溶剂和调整WCl6浓度,可分别获得单斜的W18O49纳米棒、W18O49纳米线和WO3纳米片结构。气敏性能测试结果表明,钨氧化物纳米结构对NO2气体表现出良好的可逆性,与W18O49纳米棒和WO3纳米片相比,W18O49纳米线对NO2具有更高的灵敏度。  相似文献   

5.
The control of anisotropic crystal growth is critical for directing the orientation of crystal lattice planes, and it plays a key role towards understanding the effects of different planes on chemical reactions. Here, we report on the photoelectrochemical properties of plate-structured tungsten trioxide (WO3) thin films prepared from facet-controlled rectangular platelets of hydrotungstite (WO3·2H2O) and tungstite (WO3·H2O), which are directly grown on tungsten substrates. The WO3 thin films, prepared via WO3·2H2O platelets, show relatively stable current for photoelectrochemical water splitting and methanol oxidation. On the other hand, the photocurrent of the WO3 thin films prepared via WO3·H2O platelets was significantly decreased during the photoelectrochemical oxidation of water, which is likely due to the accumulation of partially oxidized intermediates such as peroxo species on the surface. These results indicate that the surface nanostructures of WO3 may have a significant influence on photoelectrode efficiency and selectivity for the catalytic oxygen evolution reaction.  相似文献   

6.
A high-pressure reaction yielded the fully occupied tetragonal tungsten bronze K3W5O15 (K0.6WO3). The terminal phase shows an unusual transport property featuring slightly negative temperature-dependence in resistivity (dρ/dT<0) and a large Wilson ratio of RW=3.2. Such anomalous metallic behavior possibly arises from the low-dimensional electronic structure with a van Hove singularity at the Fermi level and/or from enhanced magnetic fluctuations by geometrical frustration of the tungsten sublattice. The asymmetric nature of the tetragonal tungsten bronze KxWO3-K0.6−yBayWO3 phase diagram implies that superconductivity for x≤0.45 originates from the lattice instability because of potassium deficiency. A cubic perovskite KWO3 phase was also identified as a line phase—in marked contrast to NaxWO3 and LixWO3 with varying quantities of x (<1). This study presents a versatile method by which the solubility limit of tungsten bronze oxides can be extended.  相似文献   

7.
This article discusses the formation and structure of ammonium tungsten bronzes, (NH4) x WO3−y . As analytical tools, TG/DTA-MS, XRD, SEM, Raman, XPS, and 1H-MAS NMR were used. The well-known α-hexagonal ammonium tungsten bronze (α-HATB, ICDD 42-0452) was thermally reduced and around 550 °C a hexagonal ammonium tungsten bronze formed, whose structure was similar to α-HATB, but the hexagonal channels were almost completely empty; thus, this phase was called reduced hexagonal (h-) WO3. In contrast with earlier considerations, it was found that the oxidation state of W atoms influenced at least as much the cell parameters of α-HATB and h-WO3, as the packing of the hexagonal channels. Between 600 and 650 °C reduced h-WO3 transformed into another ammonium tungsten bronze, whose structure was disputed in the literature. It was found that the structure of this phase—called β-HATB, (NH4)0.001WO2.79—was hexagonal.  相似文献   

8.
Structural models are derived for the hitherto “unresolved” small defects which should occur in the nonstoichiometric phase WO3?x. The mechanisms of aggregation or interaction of these small defects to produce extended defect structures (i.e., crystallographic shear planes and pentagonal and/or hexagonal tungsten bronze-type columns) are discussed next. Linear defects, consisting of two pairs of edge-shared octahedra, are proposed. These readily explain the large number of electron microscope observations of precipitation and dissolution phenomena reported for reduced WO3?x and doped tungsten trioxide specimens.  相似文献   

9.
In this paper, preparation of a novel pH ultramicrosensor and its physiological application has been discussed. A tungsten nanoelectrode was produced by an etching method in 0.1 mol/l NaOH solution at the potential of +0.4 V (versus Ag/AgCl reference electrode) for about 100 s and the diameters ranged from 500 to 800 nm. The pH ultramicrosensor was fabricated by producing WO3 at W nanoelectrode surface by electrooxidation in 2.0 mol/l H2SO4 solution between 1.0 and 2.0 V. At last, Nafion was coated on the surface of WO3 to protect the pH ultramicrosensor. The W/WO3 pH ultramicrosensor exhibited a good pH linear region from 2.0 to 12.0 with a super-Nernstian slope of −53.5 ± 0.5 mV/pH unit. Response times ranged from 3 s at about pH 6.0-7.0 up to 15 s at high pH. An interference of various ions to the pH measurement was also studied in this paper. We also studied the lifetime, stability and reproducibility of the W/WO3 pH ultramicrosensor. In order to testing the performance of W/WO3 ultramicrosensor, we applied it to measure the extracellular pH values and a pH variation was also given about the normal, damaged and recovery endothelial cells.  相似文献   

10.
Phase relations in the SnWO system for compositions near to WO3 and temperatures up to 1173 K have been determined by electron microscopy and X-ray diffraction. The phase limits for the bronzes previously reported in this system have been determined. For the orthorhombic I bronzes the phase limits are from Sn0.04WO3 to Sn0.06WO3. Two orthorhombic II bronze phases form, one at a composition of Sn0.13WO3 to Sn0.15WO3, and another at Sn0.16WO3. These bronzes have structures which consist of lamellae of WO3 united by fault planes. The other bronze phase to form, with the tetragonal tungsten bronze structure, has a lower composition limit of Sn0.21WO3.  相似文献   

11.
Capacitance and electrical resistivity measurements have been made on stoichiometric and on oxygen-deficient tungsten trioxide crystals from 4.2 to 300°K. X ray oscillation and rotation photographs were made on single crystals of both materials near 200°K and near 300°K. Capacitance and resistivity anomalies identify phase transitions near 40, 65, 130, 220, and 260°K in stoichiometric WO3. Resistivity anomalies occur near 80, 130, 220, and 260°K in oxygen-deficient tungsten trioxide. Capacitance measurements suggest that the transformation at 130°K of a low-temperature phase to a high-temperature phase of stoichiometric WO3 is associated with a doubling of thec-parameter of the unit cell. Resistivity measurements establish probable conduction mechanisms in each phase of stoichiometric and of oxygen-deficient tungsten trioxide, and show that oxygen-deficient tungsten trioxide undergoes a semiconductor-to-metal transition near 220°K. Electronic phenomena that do not appear to be associated with structural phase transformations are observed near 16°K in stoichiometric WO3.  相似文献   

12.
The metathesis of ethene and 2-butene to propene was studied over WO3/SiO2 catalysts with various WO3 loadings (2, 4, 8, 12, 16, and 24 wt%). The 2-butene conversion and propene selectivity increased greatly with WO3 loading increasing from 2 to 8 wt%, reached maximum at 8–12 wt% WO3 loading, and then decreased when the WO3 loading was higher than 12 wt%. From the above results and taking the economics into account, the optimal amount of WO3 loading was ~8 wt%. The catalysts were characterized by physico-chemical and spectroscopic techniques to elucidate the effect of different tungsten oxide loadings on the metathesis reactivity of ethene and 2-butene. The characterization data indicated that three types of tungsten species (i.e., surface tetrahedral tungsten species, surface octahedral polytungstate species, and WO3 crystallites) were present in the catalysts. It was found that WO3 was not the active centers, and surface tetrahedral tungsten species might be more active than octahedral polytungstate species in metathesis reaction. The reduced form of tungsten species [W+4, W+5, and W+(6−y) (0 < y < 1)] may be the suitable state of W species acting as metathesis active centers.  相似文献   

13.
The reversible photochromic response of tungsten oxide (WO3) holds promise for solar-related applications as it is capable of photo charging during illumination (color-switching) and spontaneous discharging post-illumination (self-bleaching). Advances in WO3-based nanostructures synthesis via micro/nanofabrication techniques have created remarkable potential application opportunities. Smart windows represent a typical energy-saving technology; ultraviolet indicators can sense radiation safety limits, and the around-the-clock photocatalysts can be used for pollutant degradation and bacterial disinfection applications. These materials, their distinct properties, and the effects of their application must be comprehensively understood prior to commercialization. In this work, we first summarize the affiliation between the crystallographic properties-optical features-photochromic behavior of WO3. Several photochromic models and kinetic equations are then presented, accompanied by the related characterization techniques and evaluation methods. The factors affecting photochromic efficiency (e.g., light absorption, surface reaction, and carrier migration) are delineated to clarify the advantages of the specific nanostructured WO3 and the most efficient available strategies for constructing WO3-based nanomaterials. The theory, technique, and performance associated with chromogenic applications in smart devices, energy conversion, and environmental remediation are deliberated in detail. Finally, we outline the challenges and emerging trends in this area calling for further innovation to fill various gaps.  相似文献   

14.
A green route has been developed for microwave synthesis of sodium tungsten bronzes NaxWO3 (0<x<1) from Na2WO4, WO3 and tungsten powder. The hybrid microwave synthesis was carried out in argon atmosphere using CuO powder as the heating medium. Tungsten powder is used as the reducing agent instead of the alkali metal iodides previously used for the microwave synthesis of oxide bronzes. The prepared samples were characterized by powder X-ray diffraction, energy-dispersive X-ray analysis and scanning electron microscopy, and their phase constitutions, crystal structures and morphologies are in consistence with that in the literature. This synthesis method is simple, green and atom economic, and promising for preparation of other oxide bronzes and related compounds.  相似文献   

15.
We report electrochromic properties of WO3 in Au–WO3 and Pt–WO3 nanostructure thin-film electrodes prepared by co-sputtering deposition method. The nanostructure electrodes consisted of Au or Pt metallic nanophase and a tungsten oxidative phase, indicating the formation of crystalline metallic nanophases in the amorphous oxide matrix. In particular, due to metallic nanophases, the modified electrochromic properties of WO3 were observed in the Au–WO3 and Pt–WO3. The nanostructure electrodes showed a reverse optical modulation with respect to applied potentials in H2SO4 solution compared to that of pure WO3 electrode. However, due to an excellent electrocatalytic activity of platinum for methanol electrooxidation at 25 °C, the electrochromism of the Pt–WO3 in contrast with that of the Au–WO3 was affected by the potentials for methanol electrooxidation in 2 M CH3OH and 0.5 M H2SO4.  相似文献   

16.
Thermal stability of hexagonal tungsten trioxide in air   总被引:1,自引:0,他引:1  
We studied the thermal stability of different hexagonal tungsten trioxide, h-WO3 samples, which were prepared either by annealing hexagonal ammonium tungsten bronze, (NH4)0.33−xWO3−y, or by soft chemical synthesis from Na2WO4. The structure and composition of the samples were studied by powder XRD, SEM-EDX, XPS and 1H-MAS NMR. The thermal properties were investigated by simultaneous TG/DTA, on-line evolved gas analysis (TG/DAT-MS), SEM and in situ powder XRD. The preparative routes influenced the thermal properties of h-WO3 samples, i.e. the course of water release, the exothermic collapse of the hexagonal framework and the phase transformations were all affected.  相似文献   

17.
A series of 1%Pd/WO3-ZrO2 catalysts with different W/Zr ratios and calcination temperatures of WO3-ZrO2 were prepared by an impregnation method. Their crystal structure, surface state, and acidity were determined using X-ray diffraction, N2 adsorption, NH3 temperature-programmed desorption, pyridine infrared spectroscopy, and temperature-programmed reduction. Special attention was paid to the surface states of tungsten and palladium under different preparation conditions. The results revealed that WOx surface species underwent a transformation from polytungstate species to coexistent polytungstate/crystalline WO3 and further to crystalline WO3 particles with increase of W/Zr ratio and calcination temperature. The W/Zr = 0.2 sample calcined at 1 073 K showed the maximum amount of polytungstates, which were responsible for the excellent activity. Moreover, the state of palladium was only dependent on the calcination temperature. Well-dispersed Pd species were responsible for high selectivity to acetic acid, and large metallic Pd particles were favorable for ethylene combustion.  相似文献   

18.
Chemical upcycling of polyethylene (PE) can convert plastic waste into valuable resources. However, engineering a catalyst that allows PE decomposition at low temperatures with high activity remains a significant challenge. Herein, we anchored 0.2 wt.% platinum (Pt) on defective two-dimensional tungsten trioxide (2D WO3) nanosheets and achieved hydrocracking of high-density polyethylene (HDPE) waste at 200–250 °C with a liquid fuel (C5–18) formation rate up to 1456 gproducts ⋅ gmetal species−1 ⋅ h−1. The reaction pathway over the bifunctional 2D Pt/WO3 is elucidated by quasi-operando transmission infrared spectroscopy, where (I) well-dispersed Pt immobilized on 2D WO3 nanosheets trigger the dissociation of hydrogen; (II) adsorption of PE and activation of C−C cleavage on WO3 are through the formation of C=O/C=C intermediates; (III) intermediates are converted to alkane products by the dissociated H. Our study directly illustrates the synergistic role of bifunctional Pt/WO3 catalyst in the hydrocracking of HDPE, paving the way for the development of high-performance catalysts with optimized chemical and morphological properties.  相似文献   

19.
The structures of intergrowth tungsten bronzes (ITB) of compositions Ba0.04WO3, Sn0.04WO3, Pb0.04WO3, Sn0.18WO3, and Sb0.25WO3 have been deduced from high-resolution electron microscope images. Both the Pb0.04, Sn0.04, and Ba0.04, ITB phases consist of single rows of hexagonal tunnels occupied by Pb, Sn, or Ba atoms intergrown in a WO3-like matrix. The Sb0.25, ITB phase is composed of similar rows of Sb-containing single hexagonal tunnels, the centers of which are separated by a WO3-like matrix only two octahedra in thickness. The structure of the Sn0.18, ITB phase consists of double rows of hexagonal tunnels containing Sn atoms joined by a single strip of WO3-like octahedra. The structures are compared with the structures of other known ITB phases and the nonstoichiometric behavior of these phases is discussed.  相似文献   

20.
The structure and thermal stability of a hexagonal tungsten bronze (HTB) related compound, LaxWO3+y with x≈0.10 and y≈0.15, has been studied by X-ray diffraction, thermal analysis, and electron microscopy. The structure was refined by the Rietveld method from X-ray powder diffractometer data of a La0.10WO3 sample prepared at T=1250°C and P=25 kbar, which consisted of two tungsten bronze related phases in 1:1 proportion. The unit cell dimensions are as follows: La0.108WO3+y (y≈0.16), a=7.40890(5), and c=3.79329(4) Å (HTB-related structure); La0.091WO3, a=3.82458(6) Å (cubic perovskite tungsten bronze (PTB) structure). The lanthanum atoms in La0.108WO3+y are located on the hexagonal axis and statistically distributed on two sites close to the tungsten atom plane. Thermal stability studies of the La0.10WO3 sample in an argon atmosphere under ambient pressure conditions revealed that the HTB-related compound is metastable, decomposing to the stable PTB-type structure and WO3. It was also found from the TG experiments in argon and oxygen that additional oxygen atoms (y) are present in the structure, thus forming a lanthanum tungsten oxide of the above composition. The electron diffraction and microanalysis studies confirmed that crystals of the HTB- and PTB-type structures were formed, with a lanthanum content of x≈0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号