首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用离散偶极子近似法分析了一种随机取向旋转椭球体沙尘气溶胶粒子模型在尺度参数变化范围为0.1~23时(波长0.55!m对应有效半径为0.01~2!m)的光学特性,研究了沙尘粒子非球形性程度对其光学特性的影响,并考察了非球形粒子的随机取向能否用等体积球体来代替。就随机取向单分散和多分散旋转椭球体沙尘气溶胶而言,粒子非球形特征越明显,消光效率因子、不对称因子和单次散射反照率基本上偏离其等体积球体越大;对于相同的非球形,不对称因子偏离其等体积球体的相对偏差要比消光效率因子和单次散射反照率要大。非球形粒子的随机取向并不能使其光学特性严格等效为其等体积球体的光学特性。如果粒子形状偏离球体较小,则非球形粒子的随机取向的平均效果能使其消光效率因子、不对称因子和单次散射反照率近似用等体积球体的对应光学参量来等效;而如果粒子形状偏离球形较大,仅有单次散射反照率可以近似用等体积球体的单次散射反照率来等效,例如,轴半径比为16的旋转椭球体沙尘粒子的单次散射反照率偏离其等体积球体仅在3%以内。  相似文献   

2.
Mineral dust aerosols have complex nonspherical shapes and varying composition. This study utilizes data on morphology (size and shape) and composition of dust particles to determine the extent to which the optical properties of real particles differ from those of spheres. A method for modeling the optical properties of complex particle mixtures is proposed. The method combines dust particle composition-shape-size (CSS) distributions reconstructed from the electron microscopy data, effective medium approximations and discrete dipole approximation. The method is used to compute optical characteristics of realistic dust mixtures representative of Saharan and Asian dust. We demonstrate that considered CSS distributions result in various differences in the extinction coefficient, single scattering albedo, asymmetry parameter and the scattering phase function relative to the volume-equivalent spheres and the mixtures of the randomly oriented oblate and prolate spheroids. Implications of these differences for radiation/climate modeling and remote sensing are discussed.  相似文献   

3.
We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.  相似文献   

4.
激光在不同类型气溶胶中传输特性研究   总被引:9,自引:0,他引:9       下载免费PDF全文
王红霞  竹有章  田涛  李爱君 《物理学报》2013,62(2):24214-024214
激光在大气中的传输衰减特性是激光工程应用中需要考虑的一个重要问题.本文针对常用的1.06 μm和10.6μm激光,基于Mie散射理论计算了气溶胶粒子的单次散射参量;对于激光在气溶胶中多次散射传输衰减,建立了蒙特卡罗模拟计算模型,利用Matlab语言编制了相应的计算程序,计算分析了两种波长的激光分别在沙尘性、水溶性、海洋性和煤烟性四种不同类型气溶胶中透过率与传播距离、能见度的关系,并将蒙特卡罗方法和单次散射的计算结果进行了比较.结果表明,当能见度较低、气溶胶粒子反照率较高时,单次散射计算存在很大的误差,用蒙特卡罗方法更能揭示多重散射现象;煤烟性气溶胶对1.06 μm激光的传输衰减影响最大,沙尘性气溶胶对10.6 μm激光的传输衰减影响最大.  相似文献   

5.
Airborne metallic particulates from industry and urban sources are highly conducting aerosols. The characterization of these pollutant particles is important for environment monitoring and protection. Because these metallic particulates are highly reflective, their effect on local weather or regional radiation budget may also need to be studied. In this work, light scattering characteristics of these metallic aerosols are studied using exact solutions on perfectly conducting spherical and cylindrical particles. It is found that for perfectly conducting spheres and cylinders, when scattering angle is larger than 90° the linear polarization degree of the scattered light is very close to zero. This light scattering characteristics of perfectly conducting particles is significantly different from that of other aerosols. When these perfectly conducting particles are immersed in an absorbing medium, this light scattering characteristics does not show significant change. Therefore, measuring the linear polarization of scattered lights at backward scattering angles can detect and distinguish metallic particulates from other aerosols. This result provides a great potential of metallic aerosol detection and monitoring for environmental protection.  相似文献   

6.
取向比对椭球气溶胶粒子散射特性的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
张学海  魏合理  戴聪明  曹亚楠  李学彬 《物理学报》2015,64(22):224205-224205
利用T矩阵和离散坐标法研究了取向比对椭球粒子散射特性的影响, 计算了小尺度范围内椭球粒子的散射特征参量, 包括消光效率因子、不对称因子、单次散射反照率、散射相矩阵及双向反射函数(BRDF). 结果表明, 椭球粒子的散射特性与取向比密切相关, 粒子取向比会影响散射参量的振荡频率和振幅, 与球形粒子散射参量的相对差异也呈周期振荡趋势. 研究还发现, 某些特殊粒子尺寸的散射参量与粒子取向比基本无关. 在多次散射条件下, 分析不同取向比粒子群的BRDF随反射角和光学厚度的变化特性. 结果显示: 不同取向比粒子群的BRDF随反射角的变化趋势基本一致, 球形粒子群比非球形粒子群的BRDF曲线波动振幅更大; 球形-非球形粒子的BRDF相对差异随光学厚度和取向比的增大而减小, 随入射角的增大而增大.  相似文献   

7.
基于回转椭球模型和有限长圆柱模型,采用T矩阵方法研究了非球形生物气溶胶的单次散射特性,计算了鼠疫耶尔森氏杆菌、土拉热杆菌二种生物气溶胶对氦氖激光的单次相矩阵、单次散射反照率以及不对称因子。根据矢量辐射传输理论,研究了激光在生物气溶胶中传输的偏振散射特性,基于累加-倍加法(adding-doubling method)求解矢量辐射传输方程,并计算了非球形生物气溶胶对激光多次散射的斯托克斯参量。计算结果表明,生物气溶胶的尺寸和形状对光的极化更为敏感,因此在利用激光进行生物气溶胶微观特性探测和反演时,利用激光的偏振散射特性为非常有效的方法。  相似文献   

8.
Two-dimensional angular optical scattering (TAOS) patterns of aerosols are measured simultaneously from the forward hemisphere 15 degrees < theta < 90 degrees as well as the backward hemisphere 90 degrees < theta < 165 degrees (detecting 63% of the 4pi sr of scattered light) by using an ellipsoidal reflector and an intensified CCD detector. TAOS patterns were obtained from polystyrene-latex spheres (individuals and aggregates) and from single Bacillus subtilis spores. These information-rich patterns, measured with a single laser pulse for individual particles on the fly, suggest that forward-TAOS and backward-TAOS measurements may be used for rapid classification of single aerosol particles.  相似文献   

9.
We summarize our current research on combustion aerosols. First, sampling devices for the analyses of flame gases are described. The flame gas samples are investigated by mass spectroscopy and by standard aerosol techniques. Time-of-flight mass spectroscopy is well suited to study formation and growth of soot precursor molecules. Fullerenes can also be seen in some mass spectra of flame gases. Presumably, the fullerenes are evaporated from small soot particles in the mass spectrometer by the ionizing laser. Size spectra of soot particles from the flame are presented. The flame is optionally seeded with palladium aerosol to demonstrate that the particle size distribution is not altered during the sampling procedure. It is found that soot particles are already present low in the flame where large molecules are absent.Photoemission is applied to study surface properties of soot particles from the flame. It is shown that the surface of the particles is covered with polycyclic aromatic hydrocarbons (PAH). The PAH can be removed by heating and the properties of the carbon core are revealed. One can thereby distinguish a soot growth from a soot burnout region in the flame. Time-resolved desorption experiments of perylene (a PAH) from model aerosol particles are presented. It is shown that they follow a first order rate law. The photoelectric PAH sensor is introduced as a personal air quality monitor. The danger from inhaling combustion aerosol can be expressed in units of standard cigarettes.  相似文献   

10.
随机分布烟尘团簇粒子辐射特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
类成新  吴振森 《物理学报》2010,59(8):5692-5699
基于分形理论,采用蒙特卡罗方法对随机分布的烟尘团簇粒子结构进行了仿真模拟,利用离散偶极子近似(discrete dipole approximation, DDA)方法研究了随机分布的烟尘团簇粒子的辐射特性,分析讨论了分形维数、原始微粒粒径和数量以及复折射率对随机分布烟尘团簇粒子辐射特性的影响.研究表明,在给定分形维数的情况下,烟尘团簇粒子的辐射特性取决于原始微粒粒径、数量及复折射率;原始微粒较小的团簇粒子,当分形维数较小时,吸收截面变化不明显,但当分形维数大于2时,吸收截面骤然增大,然而,对于具有比较大的原始微粒粒径、数量及复折射率的烟尘团簇粒子,吸收截面随着分形维数的增大而单调递减;随着分形维数的增大,团簇粒子的散射截面、消光截面及单次散射反照率均单调递增;从整体上来讲,团簇粒子的辐射特性与等效球形粒子的辐射特性存在着比较大的差别,并且这种差别随着分形维数的增大而减小.该工作对研究气溶胶粒子的辐射及气候效应具有重要的科学价值. 关键词: 烟尘团簇粒子 辐射特性 离散偶极子近似方法  相似文献   

11.
We report several results that validate the accuracy of a retrieval method for the determination of a number of aerosol particle properties from their mid infrared (600-6000 cm−1) extinction spectra. These properties include the number density, chemical composition, phase, size distribution, and to some extent, shape. The approach is based on information obtained in laboratory studies of micron-sized particles using the aerosol flow tube (AFT) technique. We report here experiments in which our method is used to measure a variety of aerosols including SiO2 micro-spheres as well as solid NaCl, (NH4)2SO4, ice and liquid water particles. The uncertainties in the retrieved aerosol properties associated with the particle shapes (spheres, spheroids, cylinders, hexagonal and rectangular prisms) as well as the effect of variations in the spectral range were evaluated. To assess the accuracy of the retrieved size distributions and particle shapes, the properties calculated from infrared spectra were compared with corresponding properties determined using alternative methods. We used scanning electron microscopy (SEM) for solid (NH4)2SO4 and NaCl aerosols and direct particle imaging with an optical microscope assembly for liquid water aerosols. On the basis of the validation results, we discuss the boundaries of applicability of the most popular spectral model, single scattering by spherical, homogeneous aerosol particles.  相似文献   

12.
The fractal structure of clusters formed by diffusion-limited aggregation of rodlike particles is characterized over three decades of the scattering vector q, and displays an unexpected dependence on the aspect ratio of the constituent monomers. Monte Carlo simulations of aggregating Brownian rods corroborate the experimental finding that the measured fractal dimension is an increasing function of the monomer aspect ratio. Moreover, increasing the rod aspect ratio eliminates the structural distinction between diffusion- and reaction-limited cluster aggregation that is observed for spheres.  相似文献   

13.
This study deals with re‐entry vehicles passing through high‐altitude clouds of ice particles. The particles disturb the flow field and are erosive, thereby increasing the turbulent heat flux considerably. Measurements were performed in a blow‐down wind tunnel to analyze the effects of a particle field on the flow. The wind tunnel flow was seeded by two aerosols. The first was used for LDV flow velocity measurements. Its size was checked by the analysis of its passage through a plane shock wave. The second aerosol was made of uniform micro‐spheres of 200 μm diameter, used to simulated the water droplets. The velocity, feeding and scattering of the latter aerosol need to be accurately measured. The velocities of the flow field and of the micro‐spheres were measured simultaneously by laser velocimetry. This paper describes the instruments used to seed, ascertain and measure this flow with two aerosols.  相似文献   

14.
张小林  毛毛  银燕 《光散射学报》2017,29(2):102-106
利用米散射理论数值计算分析了尺度参数为0.1~100时球形典型气溶胶粒子的散射和吸收特性对复折射率的依赖性关系。气溶胶粒子复折射率的实部和虚部是一个有机的整体,粒子复折射率的实部和虚部可以分别影响其散射和吸收特性。若实际大气气溶胶粒子大多是成核模态和积聚模态的小粒子,基于气溶胶的散射和吸收特性可以获得其复折射率的唯一解。但是,如果大气中存在大量的粗模态粒子时,气溶胶散射和吸收特性对其复折射率的依赖性较为复杂,只有选择有限的合适复折射率库区间,才有可能获得更合适的有效复折射率。  相似文献   

15.
Absorption and scattering of laser-induced incandescence (LII) intensities by soot particles present between the measurement volume and the detector were numerically investigated at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh-Debye-Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The effects of absorption and scattering on LII intensities are found to be significant under the conditions of this study, especially at the shorter detection wavelength and when the soot volume fraction is higher. Such a wavelength-dependent signal-trapping effect leads to a lower soot particle temperature estimated from the ratio of uncorrected LII intensities at the two detection wavelengths. The corresponding soot volume fraction derived from the absolute LII intensity technique is overestimated. The Beer-Lambert relationship can be used to describe radiation attenuation in absorbing and scattering media with good accuracy provided the effective extinction coefficient is adequately.  相似文献   

16.
郑利娟  程天海  吴俣 《物理学报》2017,66(16):169201-169201
黑碳气溶胶是当前气溶胶辐射强迫评估中最不确定的因子.本文通过构建黑碳的微物理模型,分别模拟了新鲜状态的黑碳气溶胶和混合生长(老化)后被硫酸盐包裹的黑碳气溶胶,利用叠加T矩阵方法计算获得了具有团簇形态和多成分混合的黑碳气溶胶红外吸收特性,通过大气辐射传输模型模拟了黑碳气溶胶的长波辐射强迫,分析了典型理化参数的敏感性.发现黑碳混合生长可以显著增强其大气层顶的长波辐射强迫,最高可达3倍.而且,包裹黑碳的硫酸盐半径越大,将明显增强大气层顶的黑碳长波辐射强迫.这些发现将有助于降低黑碳气溶胶气候效应评估的不确定性.  相似文献   

17.
This paper provides a survey of recent studies on the optical properties of aerosol and cloud particles that have been conducted at the AIDA facility of Forschungszentrum Karlsruhe (Aerosol Interactions and Dynamics in the Atmosphere). Reflecting the broad accessible temperature range of the AIDA chamber which extends from ambient temperature down to 183 K, the investigations feature a broad diversity of research topics, such as the wavelength-dependence of the specific absorption cross sections of soot and mineral dust aerosols at room temperature, depolarization and infrared extinction measurements of ice crystal clouds generated at temperatures below 235 K, and the optical properties of polar stratospheric cloud constituents whose formation was studied in chamber experiments at temperatures well below 200 K. After reviewing the AIDA research activity of the past decade and introducing the optical instrumentation of the AIDA facility, this paper presents illustrative examples of ongoing and already published work on optical measurements of soot aerosols, mineral dust particles, and ice crystal clouds.  相似文献   

18.
Measurements from depolarized lidars provide a promising method to retrieve both cloud and aerosol properties and a versatile complement to passive satellite-based sensors. For lidar observations of clouds and aerosols, multiple scattering plays an important role in the scattering process. Monte Carlo simulations are carried out to investigate the sensitivity of lidar backscattering depolarization to cloud and aerosol properties. Lidar parameters are chosen to be similar to those of the upcoming space-based CALIPSO lidar. Cases are considered that consist of a single cloud or aerosol layer, as well as a case in which cirrus clouds overlay different types of aerosols. It is demonstrated that besides thermodynamic cloud phase, the depolarized lidar signal may provide additional information on ice or aerosol particle shapes. However, our results show little sensitivity to ice or aerosol particle sizes. Additionally, for the case of multiple but overlapping layers involving both clouds and aerosols, the depolarized lidar contains information that can help identify the particle properties of each layer.  相似文献   

19.
The properties of radiation through an aerosol medium have been achieved. This has been done by employing Mie scattering theory to calculate the radiation transfer scattering parameters in the form of extinction, absorption and scattering efficiencies. The equation of radiative transfer for the heat flux through a plane parallel atmosphere of aerosol has been solved. The aerosol size distributions are found in practical systems. Average efficiencies over size distribution for spherical particles of complex refractive index are calculated. Therefore, the radiative properties of stratospheric aerosols have been done. The obtained results found to be in a good agreement with the previous work.  相似文献   

20.
Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号