首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Tuned mass sampers (TMDs) are widely used strategies for vibration control in many engineering applications, so that many TMD optimization criteria have been proposed till now. However, they normally consider only TMD stiffness and damping as design variables and assume that the tuned mass is a pre-selected value. In this work a more complete approach is proposed and then also TMD mass ratio is optimized. A standard single degree of freedom system is investigated to evaluate TMD protection efficiency in case of excitation at the support. More precisely, this model is used to develop two different optimizations criteria which minimize the main system displacement or the inertial acceleration. Different environmental conditions described by various characterizations of the input, here modelled by a stationary filtered stochastic process, are considered. Results show that all solutions obtained considering also the mass of the TMD as design variable are more efficient if compared with those obtained without it. However, in many cases these solutions are inappropriate because the optimal TMD mass is greater than real admissible values in practical technical applications for civil and mechanical engineering. Anyway, one can deduce that there are some interesting indications for applications in some actual contexts. In fact, the results show that there are some ranges of environmental parameters ranges where results attained by the displacement criterion are compatible with real applications requiring some percent of main system mass. Finally, the present research gives promising indications for complete TMD optimization application in emerging technical contexts, as micromechanical devices and nano resonant beams.  相似文献   

2.
The hysteresis exhibited by short steel wire ropes is shown to lend itself as an effective restoring force for nonlinear monodirectional tuned mass dampers. Experiment-driven modeling based on the identified hysteretic restoring forces together with continuation tools enables an optimal design of these dampers through construction of families of frequency–response curves over a wide range of excitation amplitudes. Semi-analytical/numerical and experimental studies are carried out considering a base-excited test structure represented by a simply supported beam together with a prototype of the hysteretic damper subject to either harmonic or filtered Gaussian white noise excitations.  相似文献   

3.
In-plane vibrations of wind turbine blades are of concern in modern multi-megawatt wind turbines. Today?s turbines with capacities of up to 7.5 MW have very large, flexible blades. As blades have grown longer the increasing flexibility has led to vibration problems. Vibration of blades can reduce the power produced by the turbine and decrease the fatigue life of the turbine. In this paper a new active control strategy is designed and implemented to control the in-plane vibration of large wind turbine blades which in general is not aerodynamically damped. A cable connected active tuned mass damper (CCATMD) system is proposed for the mitigation of in-plane blade vibration. An Euler–Lagrangian wind turbine model based on energy formulation has been developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations and also the interaction between the blades and the tower including the CCATMDs. The CCATMDs are located inside the blades and are controlled by an LQR controller. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. Results show that the use of the proposed new active control scheme significantly reduces the in-plane vibration of large, flexible wind turbine blades.  相似文献   

4.
This paper investigates vibration characteristics of footbridge induced by crowd random walking, and presents the application of multiple tuned mass dampers (MTMD) in suppressing crowd-induced vibration. A single foot force model for the vertical component of walking-induced force is developed, avoiding the phase angle inaccessibility of the continuous walking force. Based on the single foot force model, the crowd-footbridge random vibration model, in which pedestrians are modeled as a crowd flow characterized with the average time headway, is developed to consider the worst vibration state of footbridge. In this random vibration model, an analytic formulation is developed to calculate the acceleration power spectral density in arbitrary position of footbridge with arbitrary span layout. Resonant effect is observed as the footbridge natural frequencies fall within the frequency bandwidth of crowd excitation. To suppress the excessive acceleration for human normal walking comfort, a MTMD system is used to improve the footbridge dynamic characteristics. According to the random vibration model, an optimization procedure, based on the minimization of maximum root-mean-square (rms) acceleration of footbridge, is introduced to determine the optimal design parameters of MTMD system. Numerical analysis shows that the proposed MTMD designed by random optimization procedure, is more effective than traditional MTMD design methodology in reducing dynamic response during crowd-footbridge resonance, and that the proper frequency spacing enlargement will effectively reduce the off-tuning effect of MTMD.  相似文献   

5.
The primary purpose of this contribution is to develop a novel framework for generalized robust design of tuned mass damper (TMD) systems as passive vibration controllers for uncertain structures. This versatile strategy is intended to be free of any restriction on the structure-TMD system configuration, the performance criterion, and the number of uncertain parameters. The main idea pursued is to adopt methods and concepts from the robust control literature, including: (1) the linear fractional transformation (LFT) formulation pertaining to the structured singular value (μ) framework; (2) the concept of weighted multi-input multi-output (MIMO) norms for characterizing performance; and (3) a worst-case performance assessment method to avoid the unacceptable computation burden involved with exhaustive search or Monte Carlo methods in the presence of multiple uncertainties. Based on these, the robust design framework is organized into four steps: (1) modeling and casting the overall dynamics into the proposed LFT framework that isolates the TMD system as the controller, and the uncertainties as a structured perturbation to the nominal dynamics; (2) setting up the optimization problem based on generalized indices of nominal performance, robustness, and worst-case performance; (3) implementing a genetic algorithm (GA) for solution of the optimization problem; and (4) post-processing the results for systematic visualization, validation, and selection of preferred designs. This strategy has been implemented on several illustrative design examples involving a seismically excited multi-story building with different combinations of assumptions on the uncertainty, TMD configuration, excitation scenarios, and performance criteria. The resulting solution sets have been studied through various post-processing methods, including visualization of Pareto fronts, uncertain frequency response plots, time-domain simulations, and random vibration analysis.  相似文献   

6.
The effects of a tuned added mass on the aeroelastic stability of a single degree of freedom bluff body exposed to a steady flow are investigated. The model captures the essential aspects of the behaviour of flexible structures equipped with Tuned Mass Dampers undergoing galloping oscillations. The system exhibits simple as well double Hopf bifurcations, of non-resonant and 1:1 resonant type. Postcritical behaviour of the system in the neighbourhood of the 1:1 resonant type bifurcation is investigated. Employing the Multiple Scale Method, a second order bifurcation equation in the complex amplitude of motion is obtained. Analytical solutions are used to describe the bifurcation scenario in the cases of both undercritical and supercritical aerodynamic behaviour of the bluff body. The effectiveness of the Tuned Mass Damper even in the postcritical range is proved.  相似文献   

7.
A tuned liquid column and sloshing damper (TLCSD) is introduced in this study. It shows dynamic behavior of both tuned liquid column damper (TLCD) and tuned liquid damper (TLD) in the direction of two axes perpendicular with each other. As a preliminary study for applying the TLCSD to bidirectional control of building structures, one of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TLD. Another objective is to investigate the effect of coupled control force due to TLCD and TLD on the dynamic characteristic of the TLCSD based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of TLCSD under white noise excitation with various amplitude levels. Its dynamic characteristics are expressed by the transfer function from the shaking table acceleration to the control force generated from a TLCSD. The analytical dynamics of TLCSD is derived from the equivalent linearized TMD model. The coupled dynamics of TLCSD is expressed in terms of those of both TLCD and TLD. Finally, the key parameters of both TLCD and TLD are identified based on the coupled dynamics proposed in this study, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, and the participation factor of the fundamental liquid sloshing for a TLD and damping ratio for both cases.  相似文献   

8.
9.
Tuned liquid column dampers are U-tubes filled with some liquid, acting as an active vibration damper in structures of engineering interest like buildings and bridges. We study the effect of a tuned liquid column damper in a vibrating system consisting of a cart which vibrates under driving by a source with limited power supply (non-ideal excitation). The effect of a liquid damper is studied in some dynamical regimes characterized by coexistence of both periodic and chaotic motion.  相似文献   

10.
11.
In the present paper, Feynman formulas are obtained for Schrödinger semigroups generated by self-adjoint operators which are perturbations of self-adjoint extensions of the second-order Hamiltonian operator ?Δ g,0/2+V (throughout the paper, the coefficient ?1/2 at Δ g,0 is omitted to simplify the formulas) which describe the diffusion of a quasiparticle with position-dependent mass varying jump-like on a line. Every extension of this kind is defined by some invertible operator and is characterized by matching conditions at a jump point. The Schrödinger semigroups generated by self-adjoint Laplace operators and defined by the corresponding boundary conditions define solutions of initial-boundary value problems. In turn, the term “Feynman formulas” is applied (in the present case) to an explicit representation of the Schrödinger semigroup \(e^{t\hat H^T } \) in the form of a limit of integrals of finite multiplicity over Cartesian powers of some configuration space. In essence, the Feynman-Kac formula is a “probabilistic interpretation” of the Feynman formulas. Namely, the multiple integrals in the Feynman formulas approximate integrals against some measures on the space of trajectories (functions defined on an interval of the real line and ranging in the configuration space). Thus, the Feynman formulas enable one to evaluate integrals over spaces of trajectories. A crucial role in the proof of the Feynman formulas is played by the Chernoff theorem, which is a generalization of the famous Trotter formula. The result proved in the present paper is a demonstration of a part of the results recently announced by O. G. Smolyanov and H. von Weizäcker (“Feynman Formulas Generated by Self-Adjoint Extensions of the Laplacian,” Dokl. Ross. Akad. Nauk 426 (2), 162–165 (2009) [Doklady Mathematics, 2009 79 (3), 335–338 (2009)]). The formulations of the results in question are inessentially modified here.  相似文献   

12.
Optimum design of dynamic vibration absorbers (DVAs) installed on linear damped systems that are subjected to random loads is studied and closed-form design formulas are provided. Three cases are considered in the optimization process: Minimizing the variance of the displacement, velocity and acceleration of the main mass. Exact optimum design parameters for the velocity case, which to the best knowledge of the author do not exist in the literature, are derived for the first time. Exact solutions are found to be directly applicable for practical use with no simplification needed. For displacement and acceleration cases, a solution for the optimum absorber frequency ratio is obtained as a function of optimum absorber damping ratio. Numerical simulations indicate that optimum absorber damping ratio is not significantly related to the structural damping, especially when the displacement variance is minimized. Therefore, optimum damping ratio derived for undamped systems is proposed for damped systems for the displacement case. When acceleration variance is minimized, however, the optimum damping ratio derived for undamped systems is found not as accurate for damped systems. Therefore, a more accurate approximate expression is derived. Numerical comparisons with published approximate expressions at the same level of complexity indicated that proposed design formula yield more accurate estimates. Another important finding of the paper is that for specific applications where all of the response parameters are desired to be minimized simultaneously, DVAs designed per velocity criteria provide the best overall performance with the least complexity in the design equations.  相似文献   

13.
We explore the performance of a nonlinear tuned mass damper (NTMD), which is modeled as a two degree of freedom system with a cubic nonlinearity. This nonlinearity is physically derived from a geometric configuration of two pairs of springs. The springs in one pair rotate as they extend, which results in a hardening spring stiffness. The other pair provides a linear stiffness term. We perform an extensive numerical study of periodic responses of the NTMD using the numerical continuation software AUTO. In our search for optimal design parameters we mainly employ two techniques, the optimization of periodic solutions and parameter sweeps. During our investigation we discovered a family of detached resonance curves for vanishing linear spring stiffness, a feature that was missed in an earlier study. These detached resonance response curves seem to be a weakness of the NTMD when used as a passive device, because they essentially restore a main resonance peak. However, since this family is detached from the low-amplitude responses there is an opportunity for designing a semi-active device.  相似文献   

14.
In order to improve the performance of the tuned mass damper (TMD) for machining chatter suppression, a new-type of nonlinear TMD is proposed in this paper. Compared with the common linear TMD, the nonlinear TMD is equipped with an additional series friction-spring element. The capability of the nonlinear TMD in suppressing machining chatter vibration is investigated in this paper. The harmonic balancing method (HBM) is used to estimate the frequency response function (FRF) of the machining system to which the nonlinear TMD is attached. Considering the special nature of the machining stability problem, the optimal design parameters of this nonlinear TMD are those that minimize the magnitude of the real part of the FRF of the nonlinear TMD damped machining system. This paper also demonstrates the performance of the optimally tuned nonlinear TMD for machining stability improvement by calculating the stability diagrams for the milling of the nonlinear TMD damped workpiece. The calculation results show that more than 30% improvement in the critical limiting cutting depth can be obtained, compared to the optimally tuned linear TMD.  相似文献   

15.
Optimal control of structures with semiactive-tuned mass dampers   总被引:1,自引:0,他引:1  
In this paper, the optimal performance of a magnetorheological (MR) damper which is used in a tuned mass damper in reducing the peak responses of a single-degree-of-freedom structure subjected to a broad class of seismic inputs including the harmonic, pulse, artificially generated and recorded earthquake excitations are studied. The optimal semiactive control strategy minimizes an integral norm of the main structure squared absolute accelerations subject to the constraint that the non-linear equations of motion are satisfied and is determined through a numerical solution to the Euler-Lagrange equations. The optimal performance evaluated for an MR damper is compared to an equivalent passive-tuned mass damper with optimized stiffness and damping coefficients. It is shown numerically that the optimal performance of the MR damper is always better than the equivalent passive-tuned mass damper for all the investigated cases and the MR damper has a great potential in suppressing structural vibrations over a wide range of seismic inputs.  相似文献   

16.
The optimum design of tuned liquid column damper (TLCD) is usually performed by minimizing the maximum response of structure subjected to stochastic earthquake load without imposing any restrictions on the possible maximum oscillation of the liquid within the vertical column. However, during strong earthquake motion, the maximum oscillation of vertical column of liquid may be equal to or greater than that of the container pipe. Consequently the physical behavior of the hydraulic system may change largely reducing its efficiency. The present study deals with the optimization of TLCD parameters to minimize the vibration effect of structures addressing the limitation on such excessive liquid displacement. This refers to the design of optimum TLCD system which not only assure maximum possible performance in terms of vibration mitigation, but also simultaneously put due importance to the natural constrained criterion of excessive lowering of liquid in the vertical column of TLCD. The constraint is imposed by limiting the maximum displacement of the liquid to the vertical height of the container. Numerical study is performed to elucidate the effect of constraint condition on the optimum parameters and overall performance of TLCD system of protection.  相似文献   

17.
18.
The problem of determining the optimal cross-sectional area of a column with a tip mass, which is such that volume is minimized under given external load, fixed frequency and geometrical constraints, is investigated by use of the Pontryagin maximum principle.  相似文献   

19.
This paper employs the resolvent framework to consider the design of compliant walls for turbulent skin friction reduction. Specifically, the effects of simple spring–damper walls are contrasted with the effects of more complex walls incorporating tension, stiffness and anisotropy. In addition, varying mass ratios are tested to provide insight into differences between aerodynamic and hydrodynamic applications. Despite the differing physical responses, all the walls tested exhibit some important common features. First, the effect of the walls (positive or negative) is the greatest at conditions close to resonance, with sharp transitions in performance across the resonant frequency or phase speed. Second, compliant walls are predicted to have a more pronounced effect on slower moving structures because such structures generally have larger wall-pressure signatures. Third, two-dimensional (spanwise constant) structures are particularly susceptible to further amplification. These features are consistent with many previous experiments and simulations, suggesting that mitigating the rise of such two-dimensional structures is essential to designing performance-improving walls. For instance, it is shown that further amplification of such large-scale two-dimensional structures explains why the optimal anisotropic walls identified in previous direct numerical simulations only led to drag reduction in very small domains. The above observations are used to develop design and methodology guidelines for future research on compliant walls.  相似文献   

20.
A lagrangian method to numerically solve the L2 optimal mass transfer problem is presented. The initial and final density distributions are approximated by finite mass particles having a gaussian kernel. Mass conservation and the Hamilton–Jacobi equation for the potential are identically satisfied by constant mass transport along straight lines. The scheme is described in the context of existing methods to solve the problem and a set of numerical examples including applications to medical imagery are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号