首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Using the gel synthesis approach of polymer-analogous transformations, N-sulfoethylation of polyethylenimine was carried out by treating the polymer with sodium vinyl sulfonate. The compositions and structures of the products were characterized by elemental analysis, FT-IR spectroscopy, and 1H NMR spectroscopy. At pH 3.0–4.5 sulfoethylated polyethylenimine can selectively extract AgI and CuII from an ammonia—acetate buffer solution in the presence of a series of transition and alkaline-earth metals. At pH > 6.5 the sorbent can be used for the group extraction of a number of transition metal ions. The structural feature of the obtained derivative eliminates the selectivity of sorption of AgI ions compared to CuII ions, which has previously been revealed for the sulfoethylated derivatives of chitosan and polyaminostyrene.

  相似文献   

2.
Methods for the synthesis of new chelating chitosan derivatives containing 2-carboxyethyl groups were developed. Their macromolecules were cross-linked by the irradiation with a nanosecond electron beam, which gave for the first time sorbents with a high sorption capacity for CuII ions. The maximum sorption capacity, which is achieved in the pH range 6.5–7.2. and the Langmuir adsorption constant of Cu2+ ions on the sorbent with the degree of substitution 0.91 are 1.37 mmol g?1 and 152.51 L mol?1, respectively. The structures of the formed complexes in the sorbent phase were characterized by ESR spectroscopy.  相似文献   

3.
Abstract

Oxidation of hydroxamic acids (HXs) generates HNO, and it is not clear whether it is formed also in the presence of metal ions. The kinetics of the oxidation of HXs, such as acetohydroxamic acid, suberohydroxamic acid, and suberoylanilide hydroxamic acid (SAHA), by compounds I and II of horseradish peroxidase (HRP) at pH 7.0 and 25?°C have been studied using rapid-mixing stopped-flow. The kinetics of these reactions were compared to those observed in the presence of Cu(ClO4)2, NiSO4, or ZnSO4. The rates decrease upon increasing [CuII] at constant [HXs], and no oxidation of HX occurs when [HX]/[CuII] ≈ 2, implying that HX oxidation in the presence of CuII proceeds through the free ligand since the predominant complex is CuX2. In the case of NiII, the oxidation rate decreases upon increasing the ratio [NiII]/[HX] beyond 1, where the predominant complex is NiIIX+, implying that its oxidation is feasible. The effect of ZnII could be studied only on the rate of HXs oxidation by compound II demonstrating similar behavior to that of NiII. HXs were also oxidized catalytically by HRP/H2O2 at pH 7.0, demonstrating that metal ions facilitate the formation of HNO while hardly affecting its yield and the extent of HX oxidation.  相似文献   

4.

A method of obtaining multipurpose magnetic chitin, which combines the magnetic properties of magnetite and the adsorption properties of polysaccharide, was proposed. The possibility of using chitin-(CT) and chitosan (CS)-containing magnetic composites for the adsorption of inorganic ions CoII and CrVI and organic substances (2- and 4-nitrophenols) from aqueous media was analyzed. It was shown that the adsorption capacity of magnetic chitin with respect to CoII and CrVI ions reached 41 mg g?1 and 15 mg g?1, respectively. The maximum adsorption capacity for 4-nitrophenol (19 mg g?1 per CT-containing magnetic composite or 56 mg g?1 per chitin component) was about three times higher than for 2-nitrophenol. The obtained adsorbent Fe3O4/CT is environmentally friendly and reusable.

  相似文献   

5.
Herein, a mechanism of stepwise metal‐center exchange for a specific metal–organic framework, namely, [Zn4(dcpp)2(DMF)3(H2O)2]n (H4dcpp=4,5‐bis(4′‐carboxylphenyl)phthalic acid), is disclosed for the first time. The coordination stabilities between the central metal atoms and the ligands as well as the coordination geometry are considered to be dominant factors in this stepwise exchange mechanism. A new magnetic analytical method and a theoretical model confirmed that the exchange mechanism is reasonable. When the metathesis reaction occurs between CuII ions and framework ZnII ions, the magnetic exchange interaction of each pair of CuII centers gradually strengthens with increasing amount of framework CuII ions. By analyzing the changes of coupling constants in the Cu‐exchanged products, it was deduced that Zn4 and Zn3 are initially replaced, and then Zn1 and Zn2 are replaced later. The theoretical calculation further verified that Zn4 is replaced first, Zn3 next, then Zn1 and Zn2 last, and the coordination stability dominates the Cu/Zn exchange process. For the Ni/Zn and Co/Zn exchange processes, besides the coordination stability, the preferred coordination geometry was also considered in the stepwise‐exchange behavior. As NiII and CoII ions especially favor octahedral coordination geometry in oxygen‐ligand fields, NiII ions and CoII ions could only selectively exchange with the octahedral ZnII ions, as was also confirmed by the experimental results. The stepwise metal‐exchange process occurs in a single crystal‐to‐single crystal fashion.  相似文献   

6.
Summary Several new complexes of the title ligand (H2MPTS) with CoII, NiII, CuII, and CdII have been prepared. Structural assignments of the complexes have been made based on elemental analysis, molar conductivity, magnetic moment and spectral (i.r.,1H n.m.r., reflectance) studies. The compounds are non-conductors in dimethylsulphoxide. The neutral molecule is coordinated to the metal(II) sulphate as a bidentate ligandvia the two carbonyl groups. The ligand reacts with the metal(II) chlorides with the liberation of two hydrogen ions, behaving as a bianionic quadridentate (NONO) donor. Enolization is confirmed by the pH-titration of H2 MPTS and its metal(II) complexes against NaOH. A distorted octahedral structure is proposed for the CuII complex, while a square planar structure is suggested for both CoII and NiII complexes. The stoichiometry of the complexes formed in EtOH and buffer solutions, their apparent formation constants and the ranges for obedience to Beer's law are reported for CoII, NiII and CuII ions. The ligand pK values are calculated. The antimicrobial activity of H2 MPTS and its CoII, NiII, CuII and MnII complexes is demonstrated.  相似文献   

7.
A trimetallic CuII derivative, [Cu3(L)2(CF3COO)2] (1) (where H2L = N,N′-bis(salicylidene)-1,3-propanediamine), was prepared and characterized. In 1, the two terminal CuII ions are linked to the central CuII by trifluoroacetato and doubly bridging phenoxido. Both the square-pyramidal and octahedral geometries are observed among two different CuII centers in the linear arrangement of the trimetallic unit. Compound 1 is characterized by IR and UV-Vis spectra. Compound 1 has high cytotoxic activity in breast adenocarcinoma (MCF-7), colorectal carcinoma (HCT116) and particularly, in ovarian carcinoma (A2780) cell line compared to a lung adenocarcinoma cell line. The IC50 in A2780 cells is 25 times lower than the respective value for normal human primary fibroblasts demonstrating 1 has higher cytotoxicity towards cancer cells. Additionally, combination of DOX with 1 induces a higher loss of HCT116 cell viability compared with each drug alone.  相似文献   

8.
The asymmetric Salamo‐type N2O2 ligand H2L and its corresponding CuII and ZnII complexes [CuL] and [{ZnL}2]·2CH3CN were synthesized and structurally characterized. Crystallographic data of the CuII complex revealed that the CuII ion is tetracoordinate with a slightly distorted square planar arrangement forming a 2D supramolecular plane structure by hydrogen bonding and π···π stacking interactions. In the ZnII complex, the ZnII ions are pentacoordinate in N2O2 tetradentate fashion and intermolecular contacts between ZnII and oxygen atoms result in a head‐to‐tail dimer. The ZnII ions were found to have slightly distorted square pyramidal and trigonal bipyramidal arrangements, respectively. Hydrogen bonding interactions stabilized the ZnII complex to facilitate self‐assembly to a 1D linear chain. The CuII and ZnII complexes show intense photoluminescence with maximum emissions at approx. 426 and 411 nm upon excitation at 360 and 350 nm, respectively.  相似文献   

9.
Operando X‐ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu‐exchanged SSZ‐13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO‐assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu‐bound NO2 with proximal NH4+ completes the catalytic cycle. N2 is produced in both reduction and oxidation half‐cycles.  相似文献   

10.
Reactions of CuCl2 with different CN complexes in presence of a neutral ancillary ligand lead to two novel mixed-valence Cu complexes [CuII(bpy)CuI(CN)3]n, 1 (bpy = 2,2′-bipyridine) and {[CuII(tn)2][CuI4(CN)6]}n2 (tn = 1,3-diaminopropane). For compound 1, the asymmetric unit involves two Cu ions Cu1 and Cu2 (CuI and CuII centres, respectively) which strongly differ in their environments. The Cu1 ion presents a CuC4 pseudo-tetrahedral geometry, while the Cu2 ion presents a CuN5 slightly distorted square-pyramidal geometry. The extended structure of 1 is generated by three cyano ligands which differ in their coordination modes. One CN group has a μ3 coordination mode and bridges two CuI and one CuII ion, while the two other CN groups act as μ2 bridges leading to a sophisticated 3-D structure. As for 1, the asymmetric unit of 2 involves three crystallographically different Cu ions (Cu1A and Cu1B, presumably CuI centres, and Cu2 presumably CuII centres). The Cu2 ion presents centrosymmetric CuN4 coordination environments involving four nitrogen atoms from two bidentate tn ligands; while the Cu1A and Cu1B ions are three coordinated to cyano groups. The structure can be described as formed by 18-membered “[CuI(CN)]6” planar metallocycles that are connected to their six neighbors to generate 2-D sheets; these sheets stack forming infinite hexagonal channels in which the [Cu(tn)2]2+ units are located. Magnetic measurements show an unexpected weak ferromagnetic coupling (θ = 0.239(1) K) of the CuII ions through the long and “a priori diamagnetic” –NC–CuI–CN– bridges in compound 1 and an essentially paramagnetic behavior in compound 2.  相似文献   

11.
Electrospray ionization mass spectrometry (ESI‐MS) is used to probe the metal‐binding selectivity of a macrocyclic thiacrown ether (C44H32S20) towards CoII, NiII, CuII, and ZnII. In homogeneous 1:1 v/v methanol/dichloromethane solutions, it is found that the thia ligand very selectively binds traces of copper even in the presence of an excess of the other metal ions. The large selectivity is ascribed to the redox‐active nature of copper which enables a reduction from CuII to CuI, occurring upon ESI‐MS, whereas CoII, NiII and ZnII cannot undergo similar redox reactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Summary The formation constants of 1-phenyl-3-thiazole-2-ylthiourea complexes with some bivalent metal ions (CuII, NiII, ZnII and MnII) have been determined in 75% EtOH–H2O. Complexes of CuII, NiII, ZnII, HgII and PdII have been isolated and characterized by conductance, i.r., electronic spectra and magnetic measurements. The ligand forms ML complexes with CuII and HgII and ML2 with NiII, ZnII and PdII, where L is the uninegatively charged bidentate ligand and binds through the ring nitrogen and thiocarbonyl sulphur atoms.  相似文献   

13.
A new oxamato-bridged NiIICuIINiII species, [Ni(iprtacn)]2[Cu(pba)(H2O)0.5](BPh4)2 (1), (iprtacn?=?1,4,7-triisopropyl-1,4,7-triazacyclononane; pba?=?1,3-propylenebis(oxamato)) has been synthesized and structurally as well as magnetically characterized. Complex 1 has a discrete trinuclear NiIICuIINiII structure: Two nickel(II) ions are bridged by [Cu(pba)]2? with the macrocyclic ligand iprtacn a terminal ligand of nickel(II). Fitting the magnetic data of 1 led to g Cu?=?2.16, g Ni?=?2.18, J?=??112.5?cm?1, D?=?±7.78?cm?1. The irregular spin state structure and interaction of complex 1with DNA are described here.  相似文献   

14.
A single crystal to single crystal transmetallation process takes place in the three‐dimensional (3D) metal–organic framework (MOF) of formula MgII2{MgII4[CuII2(Me3mpba)2]3}?45 H2O ( 1 ; Me3mpba4?=N,N′‐2,4,6‐trimethyl‐1,3‐phenylenebis(oxamate)). After complete replacement of the MgII ions within the coordination network and those hosted in the channels by either CoII or NiII ions, 1 is transmetallated to yield two novel MOFs of formulae Co2II{CoII4[CuII2(Me3mpba)2]3}?56 H2O ( 2 ) and Ni2II{NiII4[CuII2(Me3mpba)2]3}? 54 H2O ( 3 ). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and magnetic properties.  相似文献   

15.
A cyclam‐based fluorescent sensor featuring a novel triazole pendant arm has been synthesised using click chemistry. The sensor is highly responsive to both CuII and HgII in neutral aqueous solution and displays excellent selectivity in the presence of various competing metal ions in 50‐fold excess. The addition of specific anions such as I? and S2O32? causes a complete revival of fluorescence only in the case of HgII, providing a simple and effective method for distinguishing solutions containing CuII, HgII or a mixture of both ions, even in doped seawater samples. X‐ray crystal structures of both the HgII sensor complex and a model CuII complex show that pendant triazole coordination occurs through the central nitrogen atom (N2), providing to the best of our knowledge the first reported examples of this unusual coordination mode in macrocycles. Fluorescence, mass spectrometry and 1H NMR experiments reveal that the mechanism of anion‐induced fluorescence revival involves either displacement of pendant coordination or complete removal of the HgII from the macrocycle, depending on the anion.  相似文献   

16.
A new trinuclear cyano-bridged CuII–MoIV–CuII compound has been prepared, characterized spectroscopically (UV–Vis and IR) and its structure determined by X-ray crystallography. The title complex 1 exhibits an antiferromagnetic exchange interaction between copper(II) ions mediated by [Mo(CN)8]4? diamagnetic units.  相似文献   

17.
A new tetranuclear CuII–HgII–HgII–CuII complex, [Cu2Hg2Cl4(C18H18N2O2)2], has been prepared by means of a copper complex found in the literature. The molecular structure of this complex was determined by X‐ray diffraction and the Cu–Hg–Hg–Cu chain was seen to be non‐linear. The change in magnetic susceptibility with temperature was recorded for this complex and observed to abide by the Curie–Weiss law. The coordination around the HgII ions is square pyramidal. The Cu?Hg bridging distance is 3.5269 (7) Å.  相似文献   

18.
The two‐dimensional (2D) layer CuII compound [Cu3(L)2(N3)4] ( 1 ) [L = 2‐amino‐3‐(5‐tetrazole)‐methyate‐N‐pyridine] was synthesized by in‐situ hydrothermal reaction of CuCl2 · 2H2O, NaN3, and 3‐(5‐tetrazole)‐methyate‐N‐pyridine. The central Cu1 and Cu2 atoms are located in five‐coordinate and six‐coordinate arrangements, respectively. Three CuII ions are linked by mixed double EO (end‐on)‐azido‐tetrazole bridges to give trinuclear CuII clusters, which are further extended by EE (end‐to‐end) azido bridges to form 2D metal‐organic layers. The magnetic exchange interactions in complex 1 were investigated by DFT calculations, and the calculated exchange interaction (J = –849 cm–1) revealed that the double EO‐azido‐tetrazole bridges transmit antiferromagnetic coupling between CuII ions.  相似文献   

19.
The perovskite (BA)4[CuII(CuIInIII)0.5]Cl8 ( 1BA ; BA+=butylammonium) allows us to study the high-pressure structural, optical, and transport properties of a mixed-valence 2D perovskite. Compressing 1BA reduces the onset energy of CuI/II intervalence charge transfer from 1.2 eV at ambient pressure to 0.2 eV at 21 GPa. The electronic conductivity of 1BA increases by 4 orders of magnitude upon compression to 20 GPa, when the activation energy for conduction decreases to 0.16 eV. In contrast, CuII perovskites achieve similar conductivity at ≈50 GPa. The solution-state synthesis of these perovskites is complicated, with more undesirable side products likely from the precursor mixtures containing three different metal ions. To circumvent this problem, we demonstrate an efficient mechanochemical synthesis to expand this family of halide perovskites with complex composition by simply pulverizing together powders of 2D CuII single perovskites and CuIInIII double perovskites.  相似文献   

20.
DFT calculations (M06, PBE0/Def2-TZVP) of coordination compounds used in reactions of selective oxidation of thiols to disulfides were performed. Primary active centers of the catalysts are polynuclear scaffolds {L2M(μ-OH)2ML2}2+ and {L2M(μ-OH)2M′(μ-OH)2ML2}2+ (M = CuI, CuII, PdII; M' = CuII; L = NH3). CuII ions in combination with PdII ions are capable of formation of polynuclear active center {PdII(μ-OH)2CuII(μ-OH)2PdII}2+ bringing together a large number of mutually oriented RS groups and thus affecting the rate of formation of disulfide R2S2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号