首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method of reducing gear vibration was analyzed using a simple spur gear pair with phasing. This new method is based on reducing the variation in mesh stiffness by adding another pair of gears with half-pitch phasing. This reduces the variation in the mesh stiffness of the final (phasing) gear, because each gear compensates for the variation in the other's mesh stiffness. A single gear pair model with a time-varying rectangular-type mesh stiffness function and backlash was used, and the dynamic response over a wide range of speeds was obtained by numerical integration. Because of the reduced variation in mesh stiffness and the double frequency, the phasing gear greatly reduced the dynamic response and nonlinear behavior of the normal gears. The results of the analysis indicate the possibility of reducing vibration of spur gear pairs using the proposed method.  相似文献   

2.
Ring gear is a key element for vibration transmission and noise radiation in the planetary gear system which has been widely employed in different areas, such as wind turbine transmissions. Its flexibility has a great influence on the mesh stiffness of internal gear pair and the dynamic response of the planetary gear system, especially for the thin ring cases. In this paper, the flexibility of the internal ring gear is considered based on the uniformly curved Timoshenko beam theory. The ring deformation is coupled into the mesh stiffness model, which enables the investigation on the effects of the ring flexibility on the mesh stiffness and the dynamic responses of the planetary gear. A method about how to synthesize the total mesh stiffness of the internal gear pairs in multi-tooth region together with the ring deformation and the tooth errors is proposed. Numerical results demonstrate that the ring thickness has a great impact on the shape and magnitude of the mesh stiffness of the internal gear pair. It is noted that the dynamic responses of the planetary gear set with equally spaced supports for the ring gear are modulated due to the cyclic variation of the mesh stiffness resulted from the presence of the supports, which adds more complexity in the frequency structure.  相似文献   

3.
A nonlinear time-varying dynamic model of a hypoid gear pair system with time-dependent nonlinear mesh stiffness, mesh damping and backlash properties is formulated to study the effect of mesh stiffness asymmetry for drive and coast sides on dynamic response. The asymmetric characteristic is the result of the inherent curvilinear tooth form and pinion offset in hypoid set. Using the proposed nonlinear time-varying dynamic model, effects of asymmetric mesh stiffness parameters that include mean mesh stiffness ratio, mesh stiffness variation and mesh stiffness phase angle on the dynamic mesh force response and tooth impact regions are examined systematically. Specifically, the dynamic models with only asymmetric mesh stiffness nonlinearity, with only backlash nonlinearity and with both asymmetric mesh stiffness and backlash nonlinearities are analyzed and compared. Using the parameters of a typical hypoid gear set, the extent of the effect of asymmetry in the mesh coupling on gear pair dynamics is quantified numerically. The results show that the increase in the mean mesh stiffness ratio tends to worsen the dynamic response amplitude, and the mesh stiffness parameters for drive side have more effect on dynamic response than those of the coast side one.  相似文献   

4.
The goal of this study was to examine the coupled vibration characteristics of a turbo-chiller rotor-bearing system having a bull-pinion speed increasing gear, using a coupled lateral and torsional vibration finite element model of a gear pair, and to provide the mechanism of the characteristic changes. The investigations were systematically carried out by comparing the uncoupled and coupled natural frequencies and their mode shapes with varying gear mesh stiffness, taking into account rotating speeds, and by comparing the strain energies of the lateral and torsional vibration modes. The results show that some modes may yield coupled lateral and torsional mode characteristics when the gear mesh stiffness increases over a certain value and, in addition, that their associated dominant modes may be different from their initial modes, i.e., a given dominant mode may change from an initial torsional one to a lateral one or vice versa.  相似文献   

5.
This work investigates the three-dimensional nonlinear vibration of gear pairs where the nonlinearity is due to portions of gear teeth contact lines losing contact (partial contact loss). The gear contact model tracks partial contact loss using a discretized stiffness network. The nonlinear dynamic response is obtained using the discretized stiffness network, but it is interpreted and discussed with reference to a lumped-parameter gear mesh model named the equivalent stiffness representation. It consists of a translational stiffness acting at a changing center of stiffness location (two parameters) and a twist stiffness. These four parameters, calculated from the dynamic response, change as the gears vibrate, and tracking their behavior as a post-processing tool illuminates the nonlinear gear response. There is a gear mesh twist mode where the twist stiffness is active in addition to the well-known mesh deflection mode where the translational stiffness is active. The twist mode is excited by periodic back and forth axial movement of the center of stiffness in helical gears. The same effect can occur in wide facewidth spur gears if tooth lead modifications or other factors such as shaft and bearing deflections disrupt symmetry about the axial centers of the mating teeth. Resonances of both modes are shown to be nonlinear due to partial and total contact loss. Comparing the numerical results with gear vibration experiments from the literature verifies the model and confirms partial contact loss nonlinearity in experiments.  相似文献   

6.
Spectral analysis techniques to process vibration measurements have been widely studied to characterize the state of gearboxes. However, in practice, the modulated sidebands resulting from the local gear fault are often difficult to extract accurately from an ambiguous/blurred measured vibration spectrum due to the limited frequency resolution and small fluctuations in the operating speed of the machine that often occurs in an industrial environment. To address this issue, a new time-domain diagnostic algorithm is developed and presented herein for monitoring of gear faults, which shows an improved fault extraction capability from such measured vibration signals. This new time-domain fault detection method combines the fast dynamic time warping (Fast DTW) as well as the correlated kurtosis (CK) techniques to characterize the local gear fault, and identify the corresponding faulty gear and its position. Fast DTW is employed to extract the periodic impulse excitations caused from the faulty gear tooth using an estimated reference signal that has the same frequency as the nominal gear mesh harmonic and is built using vibration characteristics of the gearbox operation under presumed healthy conditions. This technique is beneficial in practical analysis to highlight sideband patterns in situations where data is often contaminated by process/measurement noises and small fluctuations in operating speeds that occur even at otherwise presumed steady-state conditions. The extracted signal is then resampled for subsequent diagnostic analysis using CK technique. CK takes advantages of the periodicity of the geared faults; it is used to identify the position of the local gear fault in the gearbox. Based on simulated gear vibration signals, the Fast DTW and CK based approach is shown to be useful for condition monitoring in both fixed axis as well as epicyclic gearboxes. Finally the effectiveness of the proposed method in fault detection of gears is validated using experimental signals from a planetary gearbox test rig. For fault detection in planetary gear-sets, a window function is introduced to account for the planet motion with respect to the fixed sensor, which is experimentally determined and is later employed for the estimation of reference signal used in Fast DTW algorithm.  相似文献   

7.
A method is described which can be used to calculate dynamic gear tooth force and bearing forces. The model includes elastic bearings. The gear mesh stiffness and the path of contact are determined using the deformations of the gears and the bearings. This gives contact outside the plane-of-action and a time-varying working pressure angle. In a numerical example it is found that the only important vibration mode for the gear contact is the one where the gear tooth deformation is dominant. The bearing force variation, however, will be much more affected by the other vibration modes. The influence of the friction force is also studied. The friction has no dynamic influence on the gear contact force or on the bearing force in the gear mesh line-of-action direction. On the other hand, the changing of sliding directions in the pitch point is a source for critical oscillations of the bearings in the gear tooth frictional direction. These bearing force oscillations in the frictional direction appear unaffected by the dynamic response along the gear mesh line-of-action direction.  相似文献   

8.
Gears are one of the most common and important machine components in many advanced machines. An improved understanding of vibration signal is required for the early detection of incipient gear failure to achieve high reliability. This paper mainly consists of two parts: in the first part, a 6-degree-of-freedom gear dynamic model including localized tooth defect has been developed. The model consists of a spur gear pair, two shafts, two inertias representing load and prime mover and bearings. The model incorporates the effects of time-varying mesh stiffness and damping, backlash, excitation due to gear errors and profile modifications. The second part consists of signal processing of simulated and experimental signals. Empirical mode decomposition (EMD) is a method of breaking down a signal without leaving a time domain. The process is useful for analysing non-stationary and nonlinear signals. EMD decomposes a signal into some individual, nearly monocomponent signals, named as intrinsic mode function (IMF). Crest factor and kurtosis have been calculated of these IMFs. EMD pre-processed kurtosis and crest factor give early detection of pitting as compared to raw signal.  相似文献   

9.
Time-varying mesh stiffness parametrically excites gear systems and causes severe vibrations and instabilities. Taking speed fluctuations into account, the time-varying mesh stiffness is frequency modulated, and more complex instabilities might arise. Considering two different speed fluctuation models, parametric instability associated with velocity-modulated time-varying stiffness is analytically investigated using a typical single-mesh gear system model. Closed-form approximations are obtained by perturbation analysis, and verified by numerical analysis. The effects of the amplitude of the mesh stiffness variation, the characteristics of speed fluctuations and damping on parametric instability are systematically examined.  相似文献   

10.
This paper is aimed to investigate the kinetic parameters matching and designing method for a multi-stage torsional stiffness dual mass flywheel (DMF) based on torsional vibration control. Using the numerical analysis methods, three critical technological problems are resolved subsequently. The first one is that the kinetics simulation model of vehicle drivetrain is established, and the actual torsional vibration excitation of crankshaft and different gear pairs engaged multi-operating conditions for drivetrain are taken into account during modeling. The second one is that the kinetic parameters sensitivity of DMF with respect to torsional vibration control are obtained and the range of each kinetic parameter (i.e. rotation inertia ratio, torsional stiffness and damping) is derived further. The last one is that the parameters matching and designing methods for a multi-stage torsional stiffness DMF, considering the constraint conditions that transmission torque, relative angle and distribution of natural frequencies of DMF-drivetrain, are carried out. The results show that the torsional vibration of drivetrain is controlled effectively after matching a three-stage torsional stiffness DMF and the amplitude of angular velocity at input end of gearbox decreases significantly, which verifies that the designing and matching methods are effective and the result can thus be used in vibration control for vehicle drivetrain.  相似文献   

11.
Vibration signal models for fault diagnosis of planetary gearboxes   总被引:2,自引:0,他引:2  
A thorough understanding of the spectral structure of planetary gear system vibration signals is helpful to fault diagnosis of planetary gearboxes. Considering both the amplitude modulation and the frequency modulation effects due to gear damage and periodically time variant working condition, as well as the effect of vibration transfer path, signal models of gear damage for fault diagnosis of planetary gearboxes are given and the spectral characteristics are summarized in closed form. Meanwhile, explicit equations for calculating the characteristic frequency of local and distributed gear fault are deduced. The theoretical derivations are validated using both experimental and industrial signals. According to the theoretical basis derived, manually created local gear damage of different levels and naturally developed gear damage in a planetary gearbox can be detected and located.  相似文献   

12.
In this paper, the Melnikov analysis is extended to develop a practical model of gear system to control and eliminate the chaotic behavior. To this end, a nonlinear dynamic model of a spur gear pair with backlash, time-varying stiffness and static transmission error is established. Based on the Melnikov analysis the global homoclinic bifurcation and transition to chaos in this model are predicted. Then non-feedback control method is used to eliminate the chaos by applying an additional control excitation. The regions of the parameter space for the control excitation are obtained analytically. The accuracy of the theoretical predictions and also the performance of the proposed control system are verified by the comparison with the numerical simulations. The simulation results show effectiveness of the proposed control system and present some useful information to analyze and control the gear dynamical systems.  相似文献   

13.
This work developed a computational process to predict noise radiation from gearboxes. It developed a system-level vibro-acoustic model of an actual gearbox, including gears, bearings, shafts, and housing structure, and compared the results to experiments. The meshing action of gear teeth causes vibrations to propagate through shafts and bearings to the housing radiating noise. The vibration excitation from the gear mesh and the system response were predicted using finite element and lumped-parameter models. From these results, the radiated noise was calculated using a boundary element model of the housing. Experimental vibration and noise measurements from the gearbox confirmed the computational predictions. The developed tool was used to investigate the influence of standard rolling element and modified journal bearings on gearbox radiated noise.  相似文献   

14.
The development of the fault detection schemes for gearbox systems has received considerable attention in recent years. Both time series modeling and feature extraction based on wavelet methods have been considered, mostly under constant load. Constant load assumption implies that changes in vibration data are caused only by deterioration of the gearbox. However, most real gearbox systems operate under varying load and speed which affect the vibration signature of the system and in general make it difficult to recognize the occurrence of an impending fault.This paper presents a novel approach to detect and localize the gear failure occurrence for a gearbox operating under varying load conditions. First, residual signal is calculated using an autoregressive model with exogenous variables (ARX) fitted to the time-synchronously averaged (TSA) vibration data and filtered TSA envelopes when the gearbox operated under various load conditions in the healthy state. The gear of interest is divided into several sections so that each section includes the same number of adjacent teeth. Then, the fault detection and localization indicator is calculated by applying F-test to the residual signal of the ARX model. The proposed fault detection scheme indicates not only when the gear fault occurs, but also in which section of the gear. Finally, the performance of the fault detection scheme is checked using full lifetime vibration data obtained from the gearbox operating from a new condition to a breakdown under varying load.  相似文献   

15.
In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically.  相似文献   

16.
建立了齿圈局部故障调频现象模型,分析了故障轮齿啮合频率及其倍频两侧边频带的产生机理,给出了齿圈局部故障特征频率的计算公式,建立了倒频谱分析模型。采用激光自混合传感器,分别从径向和轴向两个方向采集齿轮箱振动信号波形。在齿轮箱1Hz和2Hz两种不同输出转频下,分别研究了无故障齿轮箱和故障齿轮箱的振动信号特征。通过实验研究验证了理论推导结果。  相似文献   

17.
Occurrence of gear rattle in transmission systems can result in severe vibration and noise, which in applications such as automobiles is an important source of user discomfort. As a result , the reduction of the rattling noise has attracted lot of concerns. The rattling noise level is affected by several gearbox parameters, an understanding of which is essential to prevent the expensive design modifications at later stages of product development. To develop such understanding at the gearbox design stage, this paper analytically evaluates the gear parameters’ effect on the root mean square of the wheel gear acceleration under idling condition, which is known to be linearly correlated to the rattling noise level. Therefore, this evaluation allows for an investigation of the gear parameters’ influence on the rattling noise as well. This method is then verified by comparing the analytical results with the simulation results from a dynamic model built in SIMPACK as well as previously published experimental results. Thus, the proposed analytical evaluation method can optimize the gearbox specifications at the design stage to reduce the gear rattle noise level.  相似文献   

18.
This paper presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting (CAL) algorithm, an adaptive manifestation of the lifting scheme. Lifting is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Adaptivity is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation synchronous signal-averaging algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have approximately the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local waveform changes associated with certain types of gear damage are poorly adapted, causing a significant change in the prediction error. A diagnostic metric based on the lifting prediction error vector termed CAL4 is developed. The CAL diagnostic algorithm is validated using data collected from the University of Maryland Transmission Test Rig and the CAL4 metric is compared with the classic metric FM4.  相似文献   

19.
Varying load can cause changes in a measured gearbox vibration signal. However, conventional techniques for fault diagnosis are based on the assumption that changes in vibration signal are only caused by deterioration of the gearbox. There is a need to develop a technique to provide accurate state indicator of gearbox under fluctuating load conditions. This paper presents an approach to gear fault diagnosis based on complex Morlet continuous wavelet transform under this condition. Gear motion residual signal, which represents the departure of time synchronously averaged signal from the average tooth-meshing vibration, is analyzed as source data due to its lower sensitiveness to the alternating load condition. A fault growth parameter based on the amplitude of wavelet transform is proposed to evaluate gear fault advancement quantitatively. We found that this parameter is insensitive to varying load and can correctly indicate early gear fault. For a comparison, the advantages and disadvantages of other measures such as kurtosis, mean, variance, form factor and crest factor, both of residual signal and mean amplitude of continuous wavelet transform waveform, are also discussed. The effectiveness of the proposed fault indicator is demonstrated using a full lifetime vibration data history obtained under sinusoidal varying load.  相似文献   

20.
In some mechanical nonlinear systems, the transient motion will be undergoing a very long process and the attractor-basin boundaries are so complicated that some difficulties occur in analyzing the system global behavior. To solve this problem a mixed cell mapping method based on the point mapping and the principle of simple cell mapping is developed. The algorithm of the mixed cell mapping is studied. A dynamic model of a gear pair is established with the backlash, damping, transmission error and the time-varying stiffness taken into consideration. The global behaviors of this system are analyzed. The coexistence of the system attractors and the respective attractor-basin of each attractor with different parameters are obtained, thus laying a theoretical basis for improvement of the dynamic behaviors of gear system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号