首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A multi-modal analysis on the intermittent contact between an atomic force microscope (AFM) with a soft sample is presented. The intermittent contact induces the participation of the higher modes into the motion and various subharmonic motions are shown. The AFM tip mass enhances the coupling of different modes. The AFM tip mass is modeled by the Dirac delta function and the coupling effects are analyzed via the Galerkin method. The necessity of applying multi-modal analysis to the intermittent contact problem is demonstrated. Unlike the impact oscillator model which assumes the impact/contact time is infinitesimal, the contact time can be a significant fractional portion in each cycle, especially for the soft sample case and thus results in different dynamic behavior from that of an impact oscillator.  相似文献   

2.
李渊  钱建强  李英姿 《中国物理 B》2010,19(5):50701-050701
The periodic impact force induced by tip-sample contact in tapping mode atomic force microscope (AFM) gives rise to non-harmonic response of a micro-cantilever. These non-harmonic signals contain the full characteristics of tip-sample interaction. A complete theoretical model describing the dynamical behaviour of tip--sample system was developed in this paper. An analytic formula was introduced to describe the relationship between time-varying tip--sample impact force and tip motion. The theoretical analysis and numerical results both show that the time-varying tip--sample impact force can be reconstructed by recording tip motion. This allows for the reconstruction of the characteristics of the tip--sample force, like contact time and maximum contact force. It can also explain the ability of AFM higher harmonics imaging in mapping stiffness and surface energy variations.  相似文献   

3.
The polymer has been proved to be nano machined by a vibrating tip in tapping mode of Atomic Force Microscope (AFM). The force between the tip and the surface is an important factor which determines success of the machining process. Controlling this force with high accuracy is the foundation of nanomachining in AFM tapping mode. To achieve a deeper understanding on this process, the tip is modeled as a driving oscillator with damping. Factors affecting the nano machining process are studied. The Hertz elastic contact theory is used to calculate the maximum contact pressure applied by the tip which is employed as a criterion to judge the deformation state of the sample. The simulation results show that: The driven amplitude can be used as a main parameter of controlling the machined depth. Sharper tips and harder cantilevers should be used for successful nanomachining with the vibrating tip. Under the same conditions, a larger tip radius will not only result in the machining error, but also lead to failure of the nanomachining process. The higher driving frequency will lead to a larger tapping force. However it cannot be used as a parameter to control the machined depth because of its narrow variation range. But it is a main error source for the nanomachining process in AFM tapping mode. Moreover, a larger Young's modulus polymer sample will induce a smaller machined depth, a larger maximum contact pressure and a bigger tapping force.  相似文献   

4.
The dissipation of energy during the process of contact and separation between a tip and a sample is very important for understanding the phase images in the tapping mode of atomic force microscopes(AFMs). In this study, a method is presented to measure the dissipated energy between a tip and a sample. The experimental results are found to be in good agreement with the theoretical model, which indicates that the method is reliable.Also, this study confirms that liquid bridges are mainly produced by extrusion modes in the tapping mode of AFMs.  相似文献   

5.
The forces acting on the substrate in intermittent-contact-mode (IC mode, tapping mode) atomic force microscopy are not accessible to a direct measurement. For an estimation of these forces, a simple analytical model is developed by considering only the shift of the cantilever resonance frequency caused by Hertzian (contact) forces. Based on the relationship between frequency shift and tip–sample force for large-amplitude frequency-modulation atomic force microscopy, amplitude and phase versus distance curves are calculated for the intermittent contact mode, and the forces on the substrate are calculated. The results show a qualitative agreement with numerical calculations, yielding typical maximal forces of 50–150 nN. When working above the unperturbed resonance, forces are found to be significantly larger than below the resonance.  相似文献   

6.
In the field of Scanning Force Microscopy several dynamical contact and noncontact modes have been introduced increasing the range of detectable surface and interface properties, and allowing to detect material properties such as elasticity and mass density on the nanometer scale. A detailed understanding of tip/surface interactions and the dynamic processes involved is required to understand the origin of a material contrast using these techniques. Here a general method to solve the equation of motion of a vibrating SFM cantilever/tip system in an external force field is presented. Contact modes as well as intermittent contact modes are discussed using a single set of equations describing the cantilever/tip motion, and by varying the size of amplitudes of the vibrating cantilever/tip system. To quantitatively describe the oscillation behavior of the SFM cantilever at large amplitudes the computer simulations are based on the MYD/BHW model providing a realistic contact model with respect to the contact area, the size of the contact forces as well as the transition from repulsive to attractive forces. The results are compared with the experiment and with different approaches based on analytical and numerical models.  相似文献   

7.
Atomic force microscopy (AFM) is widely used as a tool in studying surfaces and mechanical properties of materials at nanoscale. This paper deals with mechanical and vibration analysis of AFM vibration in the non-contact and tapping modes for V-shaped piezoelectric micro-cantilever (MC) with geometric discontinuities and cross section variation in the air ambient. In the vibration analysis, Euler-Bernoulli beam theory based on modified couple stress (MCS) theory has been used. The governing equation of motion has been derived by using Hamilton's principle. By adopting finite element method (FEM), the MC differential equation has been solved. Damping matrix was considered in the modal space. Frequency response was obtained by using Laplace transform, and it has been compared with experimental results. Newmark algorithm has been used based on constant average acceleration to analyze time response of MC, and then time response results in the vibration mode, far from the sample surface have been compared with experimental data. In vicinity of sample surface, MC is influenced by various nonlinear forces between the probe tip and sample surface, including van der Waals, contact, and capillary forces. Time response was examined at different distances between MC base and sample surface, and the best distance was selected for topography. Topography results of different types of roughness showed that piezoelectric MC has been improved in the air ambient. Topography showed more accurate forms of roughness, when MC passes through sample surface at higher frequencies. The surface topography investigation for tapping and non-contact modes showed that using of these two modes are suitable for topography.  相似文献   

8.
原子力显微镜探针耦合变形下的微观扫描力研究   总被引:3,自引:0,他引:3       下载免费PDF全文
原子力显微镜(AFM)的微探针系统是典型的微机械构件,它在接触扫描过程处于耦合变形状态.采用数值模拟方法探究恒力模式下探针耦合变形对微观扫描力信号、微观形貌信号的影响.研究表明,AFM的恒力模式扫描中,法向扫描力并不是恒定大小,与轴向扫描力存在耦合作用,在粗糙峰峰值增加阶段,二力均增加;在粗糙峰峰值减小阶段,二力均减小;该耦合作用随形貌坡度、针尖长度等增加而加强.微观形貌的测试信号和横向扫描侧向力信号受探针耦合变形影响较小,但侧向力与形貌斜率密切相关,且其极值点与形貌极值点存在位置偏差,这些结果均与原子力 关键词: 原子力显微镜 探针悬臂梁 耦合变形 扫描力  相似文献   

9.
An analytical solution of the vibration responses of biological specimens using atomic force microscopy (AFM), which often requires operation in a liquid, is developed. In this study, the modal superposition method is employed to analyze the vibration responses of AFM cantilevers in tapping mode (TM) operated in a liquid and in air. The hydrodynamic force exerted by the fluid on AFM cantilevers is approximated by additional mass and hydrodynamic damping. The tip–sample interaction forces were transformed into axial, distributed transversal, and bending loading, and then applied to the end region of the AFM through the tip holder. The effects of transverse stress and bending stress were adopted to solve the dynamic model. With this model, a number of simulations were carried out to investigate the relationship between the transient responses of the cantilever in a liquid and the parameters considered in nanoscale processing. The simulations show that the vibration of AFM cantilevers in a liquid has dramatically different dynamic characteristics from these of that in air. The liquid reduces the magnitude of the transversal response and reduces the cantilever resonances. Moreover, the magnitudes of response become larger with increasing intermolecular distances and smaller with decreasing tip length. The cantilever vibration amplitudes significantly depend on the damping constant and the mass proportionality constant.  相似文献   

10.
We obtained monocrystalline droplets in a thermotropic cubic phase, of approximate size 100μm, deposited on a flat surface. The facets of these soft crystals are explored using both an optical microscope and an AFM. The height of individual steps on the principal facets and the lateral distance between steps in vicinal facets are measured using AFM in imaging (tapping) mode. Moreover, the elastic modulus is measured locally, using the AFM tip (in contact mode) as a local rheological probe.  相似文献   

11.
How to measure energy dissipation in dynamic mode atomic force microscopy   总被引:2,自引:0,他引:2  
When studying a mechanical system like an atomic force microscope (AFM) in dynamic mode it is intuitive and instructive to analyse the forces involved in tip–sample interaction. A different but complementary approach is based on analysing the energy that is dissipated when the tip periodically interacts with the sample surface. This method does not require solving the differential equation of motion for the oscillating cantilever, but is based entirely on the analysis of the energy flow in and out of the dynamic system. Therefore the problem of finding a realistic model to describe the tip–sample interaction in terms of non-linear force–distance dependencies and damping effects is omitted. Instead, it is possible to determine the energy dissipated by the tip–sample interaction directly by measuring such quantities as oscillation amplitude, frequency, phase shift and drive amplitude. The method proved to be important when interpreting phase data obtained in tapping mode, but is also applicable to a variety of scanning probe microscopes operating in different dynamic modes. Additional electronics were designed to allow a direct mapping of local energy dissipation while scanning a sample surface. By applying this technique to the cross-section of a polymer blend a material specific contrast was observed.  相似文献   

12.
钱梦騄  赵亚军  程茜 《声学学报》2010,35(3):289-297
根据扫描探针声显微镜(SPAM)轻敲工作模式中探针作周期振动的特点,以及在探针与试样相接触过程中激振力和悬臂探针自由振动的阻尼力很小的假设下,解析求解了探针与试样的碰撞运动方程,得到了最大压痕深度和碰撞时间与探针半径、等效杨氏模量以及界面吸附能等之间的关系式,较直观地说明了SPAM中轻敲模式的相位像反差机理:信号的相位与试样微区的性质、探针振幅、设置点以及试样形貌等有关。并定量预计了纳米金刚石像中的相位差值72.59°,与实验测量平均值73.2°±8.2°一致。同时,合理地解释了实验得到的光学薄膜试样相位像的反差。这些表明SPAM轻敲模式的相位成像是一种纳米分辨率测量材料表面物理性质的成像技术。   相似文献   

13.
In AFM system with contact mode operation, the surface structure is determined by measuring the variation of the microcantilever tip deflection as the tip scans across the sample. Therefore, the dynamic characteristics of the microcantilever, including the stability, rapidity and accuracy performances, are extremely important parameters in determining the performance of AFM. In this paper, we obtain the analytical expressions of the deflection, overshoot, and adjustment time of the cantilever by using the Laplace transform theorem. The influence of the intrinsic parameters on the system dynamics is discussed in detail, which provides theoretical guidance for selecting samples in the experiments. Moreover, we propose a new control method based on the velocity feedback control in order to enhance the dynamic features of the system. The results indicate that the new control method can effectively improve the dynamic characteristics of the microcantilever.  相似文献   

14.
We describe results of atomistic molecular dynamics simulations modelling an atomic force microscope (AFM) tip immersed in a fluid. Both the tip and the surface are modelled by rigid arrays of atoms. The tip is pyramidal and the surface is the (100) face of a fcc crystal. The focus is on the solvation forces acting on the tip and on the surface and their relation to the structural and dynamic properties of the fluid. Fluid particles in the neighborhood of the tip-surface junction are found to be highly ordered compared to the bulk, as shown by localized variations in the average fluid density. The atomistic nature of the model gives rise to several effects related to the discrete sizes of the fluid, tip, and surface particles which are not observed in continuum-based theories. A number of simulated force-distance curves are presented, along with an analysis of the effect of changing fluid particle size, tip (lateral) position, tip shape, and the lyocompatability of the tip and surface materials. The atomic-scale distribution of fluid-surface forces is examined for various positions of the tip, and the extent to which the fluid can act as a “cushion” by increasing the effective area of the tip-surface interaction is studied. The effect of a fluid on AFM imaging is investigated by generating “fluid images”, which are shown to be comparable in magnitude to the direct tip-surface interaction in the noncontact mode. We compare images generated by defective and defect-free surfaces, and analyse the fluid-tip forces acting in a lateral direction. An image formed from fluid forces acting in the direction of the surface normal does not show the presence of a vacancy, but an image formed from lateral fluid forces does.  相似文献   

15.
The frequency shift and frequency shift image of cantilever in AFM have been studied by numerical integration of the equation of motion of cantilever for silicon tip with rutile TiO2(0 0 1) surface in UHV conditions and by the Hamaker summation method for the tip-surface interaction forces. The effects of the excitation frequency at the cantilever base and the equilibrium position of the tip on the frequency shift have been calculated and the results showed the same phenomena as those measured, e.g., the frequency shift increased dramatically or rapidly before the contact point and was then almost level off after the contact point. The effects of scanning speed and the initial closest distance of tip to the contact point have been calculated at different excitation frequencies at the cantilever base and the results showed that proper frequency shift image could be obtained either by noncontact mode at the excitation frequency slightly less than the resonance frequency of free cantilever, or by tapping mode at the excitation frequency a few times smaller than the resonance frequency of free cantilever.  相似文献   

16.
The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler–Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical.  相似文献   

17.
A calculation model for determination of the shapes of the constant force surfaces and profiles of lateral forces for the case of the AFM tip scanning the closely packed lattice in contact mode is proposed. Atomic relaxation is taken into account in this model. The existence of breaks on constant force surfaces, which was predicted earlier in an approximation of the fixed lattice, is confirmed. It is shown that due to non-zero atomic mobility, breaks appear for smaller scanning forces than assumed earlier. The shapes of the continuous constant force surfaces and profiles of lateral force components are computed. These results may be used for diagnostics of point defects on the surface.  相似文献   

18.
The use of an atomic force microscope (AFM) as a nanolithographic tool is demonstrated. A photoresist layer several nanometre thin isindented by the vibrating AFM tip, where software control switches the tapping force from the imaging to the patterning mode. The resist pattern is transferred into a 10 nm SiO2layer on Si(100) by wet chemical etching resulting in 20–40 nm wide lines. Subsequent transfer into the Si substrate using anisotropic KOH etching formed 60 nm wide V grooves.  相似文献   

19.
Considering that capillary force is one of the most important forces between nanoparticles and atomic force microscope (AFM) tips in ambient atmosphere, we develop an analytic approach on the capillary force between an AFM tip and a nanoparticle. The results show that the capillary forces are considerably affected by the geometry of the AFM tip, the humidity of the environment, the vertical distance between the AFM tip and the nanoparticle, as well as the contact angles of the meniscus with an AFM tip and a nanoparticle. It is found that the sharper the AFM tip, the smaller the capillary force. The analyses and results are expected to be helpful for the quantitative imaging and manipulating of nanoparticles by AFMs.  相似文献   

20.
陈赵江  张淑仪 《声学学报》2016,41(5):555-567
利用Euler-Bernoulli梁理论和DMT针尖-样品作用力模型建立了试样激励下轻敲模式原子力声显微镜(AFAM)系统的动力学方程,并应用非线性动力学分析方法对AFAM微悬臂梁的振动特性进行研究。通过合理改变超声激励幅值、超声激励频率和针尖-样品初始间距等模型参数模拟得到微悬臂梁的超谐波、次谐波、准周期和混沌振动现象,采用时间序列、频谱、相空间、Poincare截面和Lyapunov指数等方法对不同非线性振动特性进行表征。通过分析不同模型参数条件下微悬臂梁针尖-样品作用力特性,探索了微悬臂梁不同非线性振动现象的产生机制。此外,研究了AFAM微悬臂梁运动的分岔特性,发现当超声激励幅值和针尖-样品初始间隙连续变化时,周期、准周期和混沌运动交替出现。研究结果对AFAM系统非线性动力学行为分析和混沌振动控制提供了理论参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号