首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical procedure to estimate not only the natural frequencies but also modes of open cylindrical shells with a circumferential thickness taper by the transfer matrix method is presented. The transfer matrix is derived from the non-linear differential equations for the cylindrical shells by numerical integration. The accuracy and convergence characteristics of this method are investigated, and the natural frequencies and modes of open cylindrical shells with a circumferential thickness taper are presented for various curvatures, aspect ratios, boundary conditions and thickness ratios. Furthermore, the influences of thickness variation of the cross-section on the natural frequencies and modes are examined.  相似文献   

2.
The first comprehensive study of shallow shell vibrations subjected to as many as 21 possible boundary conditions is presented. Thin shallow shell theory is used. Relatively accurate results for natural frequencies of doubly-curved shallow shells have been obtained. These can be used for benchmarking by researchers as well as reference data for practicing engineers. The Ritz method is used to solve for natural vibrations of these shells with arbitrary boundary conditions. Natural frequencies are presented for various shell curvatures including spherical, cylindrical and hyperbolic paraboloidal shells.  相似文献   

3.
In the present work, the study of the nonlinear vibration of a functionally graded cylindrical shell subjected to axial and transverse mechanical loads is presented. Material properties are graded in the thickness direction of the shell according to a simple power law distribution in terms of volume fractions of the material constituents. Governing equations are derived using improved Donnell shell theory ignoring the shallowness of cylindrical shells and kinematic nonlinearity is taken into consideration. One-term approximate solution is assumed to satisfy simply supported boundary conditions. The Galerkin method, the Volmir's assumption and fourth-order Runge–Kutta method are used for dynamical analysis of shells to give explicit expressions of natural frequencies, nonlinear frequency–amplitude relation and nonlinear dynamic responses. Numerical results show the effects of characteristics of functionally graded materials, pre-loaded axial compression and dimensional ratios on the dynamical behavior of shells. The proposed results are validated by comparing with those in the literature.  相似文献   

4.
Theoretical analysis is performed on the linear dynamic equations of thin cylindrical shells to find the error committed by making the Donnell assumption and the neglect of in-plane inertia. At first, the effect of these approximations is studied on a shell with classical simply supported boundary condition. The same approximations are then investigated for other boundary conditions from a consistent approximate solution of the eigenvalue problem. The Donnell assumption is valed at frequencies high compared with the ring frequencies, for finite length thin shells. The error in the eigenfrequencies from omitting tangential inertia is appreciable for modes with large circumferential and axial wave lengths, independent of shell thickness and boundary conditions.  相似文献   

5.
The main aim of this paper is to provide a simple yet efficient solution for the free vibration analysis of functionally graded (FG) conical shells and annular plates. A solution approach based on Haar wavelet is introduced and the first-order shear deformation shell theory is adopted to formulate the theoretical model. The material properties of the shells are assumed to vary continuously in the thickness direction according to general four-parameter power-law distributions in terms of volume fractions of the constituents. The separation of variables is first performed; then Haar wavelet discretization is applied with respect to the axial direction and Fourier series is assumed with respect to the circumferential direction. The constants appearing from the integrating process are determined by boundary conditions, and thus the partial differential equations are transformed into algebraic equations. Then natural frequencies of the FG shells are obtained by solving algebraic equations. Accuracy and reliability of the current method are validated by comparing the present results with the existing solutions. Effects of some geometrical and material parameters on the natural frequencies of shells are discussed and some selected mode shapes are given for illustrative purposes. It’s found that accurate frequencies can be obtained by using a small number of collocation points and boundary conditions can be easily achieved. The advantages of this current solution method consist in its simplicity, fast convergence and excellent accuracy.  相似文献   

6.
The problem of determining the type of fastening of a circular plate inaccessible to direct observation from the natural frequencies of its symmetric flexural vibrations is considered. The uniqueness theorem for the solution to this inverse problem is proved, and a method for the reconstruction of unknown boundary conditions is indicated. An approximate formula for the determination of unknown boundary conditions from three natural frequencies is obtained. It is assumed that the natural frequencies can be given approximately, within a certain accuracy. The method of an approximate calculation of unknown boundary conditions is illustrated by four examples of different cases of the plate fastening (a free support, an elastic fixing, a floating fixing, and a free edge).  相似文献   

7.
In this paper, the free and forced vibration analysis of circular cylindrical double-shell structures under arbitrary boundary conditions is presented. This is achieved by employing the improved Fourier series method based on Hamilton’s principle. In the formulation, each displacement component of the cylindrical shells and annular plates is invariantly expanded as the superposition of a standard Fourier series with several supplementary functions introduced to remove the potential discontinuities of the original displacement and its derives at the boundaries. With the introduction of four sets of boundary springs at the coupling interfaces and end boundaries of the shell–plate combination, both elastic and rigid coupling and end boundary conditions can be easily obtained by assigning the stiffnesses of the artificial springs to certain values. The natural frequencies and mode shapes of the structures as well as frequency responses under forced vibration are obtained with the Rayleigh–Ritz procedure. The convergence of the method is validated by comparing the present results with those obtained by the finite element method. Several numerical results including natural frequencies and mode shapes are presented to demonstrate the excellent accuracy and reliability of the current method. Finally, a number of parameter studies concerning various end and coupling boundary conditions, different dimensions of shells and annular plates are also performed.  相似文献   

8.
A new formula for the natural frequencies of circular cylindrical shells is presented for modes in which transverse deflections dominate. It is valid for all boundary conditions for which the roots of the analogous beam problem can be obtained. Good agreement with experimental data for a variety of boundary conditions is shown.  相似文献   

9.
In this paper, the free vibrations of elastic in vacuo circular toroidal shells under different boundary conditions are studied using the linear Sanders thin shell theory. Beam functions are used to describe the motion along the meridional direction whilst trigonometric functions are used to represent the deformation of the cross section. It is shown that both the natural frequencies and the mode shapes can be accurately predicted as long as the employed beam functions satisfy the boundary conditions at the ends of the shells. The dependence of the free vibration characteristics of an elastic toroidal shell upon boundary conditions and toroidal to cross-sectional radius ratio is also illustrated and explained in this paper.  相似文献   

10.
The axisymmetrical response of a circular cylindrical double-shell system with internal damping to a time-dependent surface load is determined by the matrix analysis method. For this purpose, the equations of vibration of the system based upon the Goldenveizer-Novozhilov theory are written as a coupled set of first order differential equations by the use of the state vector of the system. Once the vector has been determined by quadrature of the equations, the steady state response is calculated numerically together with the natural frequencies in terms of the elements of the transfer matrix of the system under any combination of boundary conditions. By the application of the method, the dynamic response and the resonant frequencies (the natural frequencies) are calculated numerically for a double-shell system simply supported at the edges.  相似文献   

11.
For free vibrations of polar orthotropic plate, simple approximate closed form solutions for mode shapes and its natural frequencies were obtained using the Rayleigh-Ritz method. Coordinate function satisfying the natural boundary conditions and the predetermined coefficients was adapted, which results in compact expressions and enables to readily calculate symmetric and nonsymmetric natural frequencies for arbitrary values of the elastic constants. The derived formulation can be used in designing of circular plates such as wood disk, which are naturally endowed with material orthotropy as well as fiber reinforced composite materials. The model can easily be used for the evaluation of parametric studies on dynamic behaviors and nondestructive methods during the initial design process.  相似文献   

12.
In-plane dynamic behaviour of a thin annular disk with a clamped inner boundary is analyzed. The frequencies of free in-plane vibration with a free outer boundary are first evaluated, by using Lamé potentials, for various radius ratios ranging from 0.2 to 0.8. The steady state dynamic stresses induced by a concentrated load moving at a constant angular speed at the outer boundary are then evaluated through a Galilean transformation. Results are presented for a radius ratio of 0.5.  相似文献   

13.
The subject of this paper is the development of a general solution procedure for the vibrations (primary resonance and nonlinear natural frequency) of systems with cubic nonlinearities, subjected to nonlinear and time-dependent internal boundary conditions—this is a commonly occurring situation in the vibration analysis of continuous systems with intermediate elements. The equations of motion form a set of nonlinear partial differential equations with nonlinear, time-dependent, and coupled internal boundary conditions. The method of multiple timescales, an approximate analytical method, is applied directly to each partial differential equation of motion as well as coupled boundary conditions (i.e. on each sub-domain and the corresponding internal boundary conditions for a continuous system with intermediate elements) which ultimately leads to approximate analytical expressions for the frequency-response relation and nonlinear natural frequencies of the system. These closed-form solutions provide direct insight into the relationship between the system parameters and vibration characteristics of the system. Moreover, the suggested solution procedure is applied to a sample problem which is discussed in detail.  相似文献   

14.
张永康  鲍四元 《应用声学》2024,43(2):330-338
本文使用微分方程解析法求解变截面梁固有频率。首先,建立变截面梁模型,其中截面面积和惯性矩均按幂次函数变化。得到变截面梁自由振动时挠度的解析表达式,并获得不同边界条件下梁弯曲振动的固有频率方程。其中惯性矩所对应幂指数与截面面积的幂指数的差值为4时,可得自振频率方程的精确形式;而幂指数差值不等于4时,给出近似解法。其次,对4种具体的变截面梁求解不同边界下的自振频率,并与瑞利-里兹法所得的自振频率解比较。验证精确解法结果的正确性,并发现近似解法结果的相对偏差在5%以内。该解析方法较瑞利-里兹法具有能快速求解的特点,且易于分析截面参数对梁固有频率的影响。由算例可得,边界和其他参数不变时,梁的同阶次无量纲自振频率随着幂次指数的增加而增加。几何参数中仅截面形状参数改变时,随着形状参数的增加,梁的同阶次无量纲自振频率随之减小,但固定-自由梁的第一阶自振频率除外。  相似文献   

15.
仝博  李永清  朱锡  张焱冰 《声学学报》2020,45(3):415-424
为了获得任意角度铺层的多层复合材料圆柱壳的自由振动准确解,在三维弹性理论的基础上,结合分层理论和状态空间法,建立横向位移和应力的传递矩阵,轴向和环向位移采用双螺旋模式的位移函数,对任意角度铺层复合材料圆柱壳简支边界条件下的自由振动进行了理论推导,得到了自由振动方程的精确形式。与文献理论解和有限元计算结果对比,结果表明,关注频率在2倍的环频率以下时,薄壳的固有频率计算精度能控制在1%以内,厚壳的固有频率计算精度能控制在2%以内。对于厚壳的计算可将壳体沿厚度方向划分为多层来处理,这样能有效提高计算精度。计算分析了铺层角对壳体固有频率的影响,环向模态数较低时,固有频率随着铺层角的增加呈抛物线变化趋势;环向模态数较高时,固有频率随着铺层角的增大单调递增。该理论方法同样适用于均质各向同性壳和正交各向异性圆柱壳。  相似文献   

16.
The natural frequencies and loss factors of the coupled longitudinal and flexural vibrations of a system consisting of a pair of parallel and identical elastic cantilevers which are lap-jointed by viscoelastic material over a length ac from their free ends have been investigated. A complete set of equations of motion and boundary conditions governing the vibration of the system are derived. The solution of these equations, subject to satisfying the boundary conditions, yields the desired natural frequencies and associated composite loss factors. The numerical results have been compared with those from two other approximate methods.  相似文献   

17.
An analysis is presented for the vibration and stability of a circular cylindrical shell subjected to a torque. The displacements of a circular shell are written in a series of beam eigenfunctions satisfying the boundary conditions. The kinetic and strain energies of the shell are evaluated analytically, and the frequency eauation of the shell is derived by the Ritz method. The method is applied to circular cylindrical shells under two types of boundary conditions at the edges; the natural frequencies and the divergence torques are calculated numerically, and the effects of the thickness ratio, length ratio and edge conditions on the vibration and stability are studied.  相似文献   

18.
An analysis is presented for the free vibration of joined conical-cylindrical shells. The governing equations of vibration of a conical shell, including a cylindrical shell as a special case, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the matrix has been determined, the entire structure matrix is obtained by the product of the transfer matrices of the shells and the point matrix at the joint, and the frequency equation is derived with terms of the elements of the structure matrix under the boundary conditions. The method has been applied to a joined truncated conical-cylindrical shell and an annular plate-cylindrical shell system, and the natural frequencies and the mode shapes of vibration calculated numerically. The results are presented.  相似文献   

19.
This note presents vibration analysis of isotropic rectangular plates with free edges by the Rayleigh-Ritz method with B-spline functions. To show the accuracy of the present method, the results are compared with existing results based on other numerical methods and found to be in good agreement. Accurate frequencies of rectangular plates are analyzed for different aspect ratios and boundary conditions. The effects of Poisson's ratio on natural frequencies of square plates with free edges are also investigated.  相似文献   

20.
This paper presents, for the first time, exact closed-form frequency equations and transverse displacement for thick circular plates with free, soft simply supported, hard simply supported and clamped boundary conditions based on Reddy's third-order shear deformation theory. Hamiltonian and minimum potential energy principles are used to extract the equations of dynamic equilibrium and natural boundary conditions of the plate. The new formulation is verified by comparing the results with their counterparts reported in open literature. Natural frequencies of circular plates with different boundary conditions are tabulated in dimensionless form for various values of thickness-radius ratios. The results presented on the basis of exact, closed-form frequency equations are expected to serve as reliable benchmarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号