首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The propagation of time-harmonic plane elastic waves in infinite elastic composite materials consisting of linear elastic matrix and rigid penny-shaped inclusions is investigated in this paper. The inclusions are allowed to translate and rotate in the matrix. First, the three-dimensional (3D) wave scattering problem by a single inclusion is reduced to a system of boundary integral equations for the stress jumps across the inclusion surfaces. A boundary element method (BEM) is developed for solving the boundary integral equations numerically. Far-field scattering amplitudes and complex wavenumbers are computed by using the stress jumps. Then the solution of the single scattering problem is applied to estimate the effective dynamic parameters of the composite materials containing randomly distributed inclusions of dilute concentration. Numerical results for the attenuation coefficient and the effective velocity of longitudinal and transverse waves in infinite elastic composites containing parallel and randomly oriented rigid penny-shaped inclusions of equal size and equal mass are presented and discussed. The effects of the wave frequency, the inclusion mass, the inclusion density, and the inclusion orientation or the direction of the wave incidence on the attenuation coefficient and the effective wave velocities are analysed. The results presented in this paper are compared with the available analytical results in the low-frequency range.  相似文献   

2.
Time-harmonic plane wave propagation in a two-dimensional (2D) elastic matrix with partially debonded elastic fibres of nonclassical cross-section is investigated. The modified null field approach, taking into account the asymptotic behaviour of the solution at the interface crack-tips, is exploited to obtain the numerical results for a single scatterer. The effective medium approach based on Foldy's approximation is applied to estimate the average dynamic parameters of the composites containing randomly distributed partially debonded fibres of dilute concentration. Numerical results concern the longitudinal wave dispersion and attenuation owing to scattering by both randomly oriented and aligned fibres. The effects of the fibre shape, debonding (interface crack) size and direction of wave incidence on the effective P-wave velocity and attenuation coefficient are analysed.  相似文献   

3.
In the current paper a general method is presented for the rigorous solution for the scattering of elastic waves by a cluster of elastic circular cylinders of infinite length. The interface separating the cylinder from the surrounding media is considered to be homogeneous imperfect. Specifically, the tractions are continuous but the displacements are discontinuous and proportional in terms of interface stiffness parameters to their respective traction components. Using the exact theory of multipole expansion, analytic solutions for the scattered and internal fields excited by an incident plane P-wave, an incident cylindrical P-wave and an incident plane SV-wave are derived.

Numerical results for directivity patterns and scattering cross-sections are presented for a finite hexagonal array of elastic circular inclusions with imperfect interface. The results show that the sequence of maxima and minima in the curves of scattered cross-sections becomes more undistinguishable as the interface becomes more imperfect. Also, the results reveal that large low-frequency peaks of the scattered cross-sections, which correspond to resonance scattering, can be observed for both the low-velocity and high-velocity elastic cylinders with extremely imperfect interface while the small high-frequency peaks of the scattered cross-sections can appear for low-velocity elastic cylinders with relatively perfect interface. Furthermore, the results clearly show that the interaction effects between cylinders cannot be ignored for an incident plane SV-wave as compared to an incident plane P-wave. More importantly is the fact that the reciprocity relations, which hold for elastic wave scattering by a single cylinder, no longer apply for elastic wave scattering by multiple cylinders.  相似文献   

4.
In the current paper a general method is presented for the rigorous solution for the scattering of elastic waves by a cluster of elastic circular cylinders of infinite length. The interface separating the cylinder from the surrounding media is considered to be homogeneous imperfect. Specifically, the tractions are continuous but the displacements are discontinuous and proportional in terms of interface stiffness parameters to their respective traction components. Using the exact theory of multipole expansion, analytic solutions for the scattered and internal fields excited by an incident plane P-wave, an incident cylindrical P-wave and an incident plane SV-wave are derived.

Numerical results for directivity patterns and scattering cross-sections are presented for a finite hexagonal array of elastic circular inclusions with imperfect interface. The results show that the sequence of maxima and minima in the curves of scattered cross-sections becomes more undistinguishable as the interface becomes more imperfect. Also, the results reveal that large low-frequency peaks of the scattered cross-sections, which correspond to resonance scattering, can be observed for both the low-velocity and high-velocity elastic cylinders with extremely imperfect interface while the small high-frequency peaks of the scattered cross-sections can appear for low-velocity elastic cylinders with relatively perfect interface. Furthermore, the results clearly show that the interaction effects between cylinders cannot be ignored for an incident plane SV-wave as compared to an incident plane P-wave. More importantly is the fact that the reciprocity relations, which hold for elastic wave scattering by a single cylinder, no longer apply for elastic wave scattering by multiple cylinders.  相似文献   

5.
In the present Letter, the multiple scattering theory (MST) for calculating the elastic wave band structure of two-dimensional phononic crystals (PCs) is extended to include the interface/surface stress effect at the nanoscale. The interface/surface elasticity theory is employed to describe the nonclassical boundary conditions at the interface/surface and the elastic Mie scattering matrix embodying the interface/surface stress effect is derived. Using this extended MST, the authors investigate the interface/surface stress effect on the elastic wave band structure of two-dimensional PCs, which is demonstrated to be significant when the characteristic size reduces to nanometers.  相似文献   

6.
《Composite Interfaces》2013,20(2):95-125
Scattering of elastic P-waves from a nanofiber in a matrix is studied analytically throughout this paper. An inhomogeneous interphase region is considered between the nanofiber and the matrix. Dividing the interphase into homogeneous sublayers, surface elasticity effects are studied in the layers adjacent to matrix and nanofiber. Wave function expansion method is used to solve the corresponding equations in all three phases including fiber, interphase, and matrix. Dynamic stress concentration factors around the nanofiber are calculated and utilizing a parametric study, effects of different parameters, such as nanoscale interface, interphase thickness, and interphase rigidity are investigated. The results indicate that considering the effects of surface elasticity in wave scattering problems from inhomogeneous interphases show a major impact on the results. The dimensionless equations presented in this paper provide the possibility of further numerical studies.  相似文献   

7.
Taking into account the size of the nanostructure, the effect of surface/interface stiffness on the dynamic stress around a cylindrical nano-inhomogeneity embedded in an elastic half-plane subjected to anti-plane shear waves is investigated. The boundary condition at the straight edge of the half-plane is traction free, which is satisfied by the image method. The analytical solutions of displacement fields are expressed by employing a wave function expansion method. The addition theorem for a cylindrical wave function is applied to accomplish the superposition of wave fields in the two half-planes. Analyses show that the effect of the interface properties on the dynamic stress is significantly related to the nano-scale distance between the straight edge and the center of the cylindrical nano-inhomogeneity. The frequency and incident angle of incident waves and the shear modulus ratio of the nano-inhomogeneity to matrix also show different effect on the dynamic stress distribution when the inhomogeneity shrinks to nano-scale. Comparison with the existing results is also given.  相似文献   

8.
A theoretical investigation of the nonlinear interaction between an acoustic plane wave and an interface formed by two rough, nonconforming surfaces in partial contact is presented. The macroscopic elastic properties of such a nonlinear interface are derived from micromechanical models accounting for the elastic interaction that is characteristic of spherical bodies in contact. These results are used to formulate set of boundary conditions for the acoustic field, which are to be enforced at the imperfect interface. The scattering problem is solved for plane wave incidence by using a simple perturbation approach and the harmonic balance method. Sample results are presented for arbitrary wave polarization and angle of incidence. The relative magnitude of the nonlinear signals and their potential use toward the nondestructive evaluation of imperfect interfaces are assessed. In particular, attention is drawn to the enhanced nonlinear response of an interface insonified by a shear vertical wave in the neighborhood of the longitudinal critical angle. The motivation for this investigation is provided by the need to develop nondestructive methods to detect and localize small, partially closed cracks in metals with coarse microstructures.  相似文献   

9.
I.IntroductionWiththerapiddevelopmentoffiberreinforeedcompositematerials,muchattcntionhasbeenpaidtothecva1uationofthefiber/matrixinterfaces[1-51wheredefectSmayemergeafterlongusageofthecomposites.Foraweakenedinterface,twostiffnessconstantsareusuallyin-tfoducedtomodc1theboundaryconditionsforthestressesanddisNacementsatbothsidesandtheyareclose1yrclatedtotheultrasonicattenuationduetoscattering['].However,sofarnopublishedrcportsarcavai1ab1e.Whitemadeadetailedinvestigationofsoundwavescatteringatac…  相似文献   

10.
王耀俊  宁伟  欧贤华 《声学学报》1995,20(4):264-270
为了用超声方法评价纤维增强复合媒质中纤维/母材的界面特性,本文建立了三层柱状固体媒质声散射截面积和纤维增强复合媒质中声衰减的计算方法。当纤维/母材界面层厚度与波长相比很小时,用两个劲度常数描述纤维与母材之间力学量的边界条件,得到了计算纤维增强媒质中声衰减的简化模型。本文还从数值上计算了纤维/铝复合媒质中超声纵波衰减与界面特性、超声频率的关系。  相似文献   

11.
The classical method of separation of variables in conjunction with the translational addition theorem for cylindrical wave functions are employed to obtain an exact solution for two-dimensional interaction of a harmonic plane acoustic wave with an infinitely long (visco)elastic circular cylinder which is eccentrically coated by another (visco)elastic material and is submerged in an ideal unbounded acoustic medium. The novel features of Havriliak-Negami model for dynamic viscoelastic material behaviour are used to take the rheological properties of the coating (and/or core) material into consideration. The analytical results are illustrated with numerical examples in which a steel rod eccentrically coated with (an eccentric steel shell filled with) dissipative materials of distinct viscoelastic properties is insonified by plane sound waves at selected angles of incidence. The effects of incident wave frequency, angle of incidence, core eccentricity and dynamic viscoelastic material properties on the backscattered form function spectra are examined. Limiting cases are considered and fair agreements with available solutions are obtained.  相似文献   

12.
This paper presents a dynamic analysis of time-harmonic plane SH-waves propagating in periodically multilayered elastic composites with a strip-like crack. The total wave field in the multilayered elastic structure is described as a sum of incident wave field modeled by the transfer matrix method and the scattered wave field governed by an integral representation containing the crack-opening-displacement. The integral equation derived from the boundary conditions on the crack-faces is solved numerically by a Galerkin method. The paper focuses on resonant and non-resonant regimes of anti-plane wave motion in a stack of elastic layers weakened by a single strip-like crack and wave localization in the vicinity of the crack. The scattered extra displacement induced by the presence of the crack is investigated in detail for both situations of high and low contrast in material properties. Numerical results for the average crack-opening-displacement, the transmission coefficient, the stress intensity factor and the average energy flow are presented and discussed to reveal wave resonance and localization phenomena within the band-gaps and the pass-bands.  相似文献   

13.
In this paper, based on the theory of elastic wave motion for open cylindrical shell, wave scattering and dynamic stress concentrations in open cylindrical shells with a hole are studied by making use of small parameter perturbation methods and boundary-integral equation techniques. The boundary-integral equations and iterative imminent series of scattered waves around the cavity of the cylindrical shell are derived. By employing this method, the approximately analytical solutions of scattered waves on the edge of cutout are gained. The computational formula for getting the dynamic stress concentration factors on the contour of cavity is developed. As an example, the numerical results of these dynamic stress concentration factors are graphically presented and discussed. The analytical methods put forward in the present work have practical significances for solving the problem of elastic wave scattering and dynamic stress concentrations in cylindrical shells with a circular cutout.  相似文献   

14.
The elastic scattering amplitude of a scalar particle in an arbitrary plane wave electromagnetic field is obtained in the form of a double integral by the method of dispersion relations. Particular cases of giving the plane wave field are investigated. It is shown that the existence of scalar particle radiation in an arbitrary plane wave electromagnetic field results in elastic scattering, whose amplitude determines the change in particle mass in this field.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 32–37, May, 1990.  相似文献   

15.
Methods of recording the electric signals generated during wave oscillations and wave propagation and the results of experiments on determination of dynamic characteristics of thin fibers and films are reviewed. New experimental setups have been developed. A possibility of studying the spectra of fiber oscillations is demonstrated, and a method for determining nonlinear stress-strain diagrams based on variations in the frequencies of transverse oscillations of this fibers as strings is proposed. The effect of sharp deceleration of dispersal of a charge being coated on the specimen surface in case of a damaged glass fiber is discovered. A complex method for measuring wave and mass velocities of elastic waves and instant elasticity moduli of a fiber during simultaneous high-speed photography and recording of electromagnetic radiation is developed. The dependences of these quantities on the wave intensity are given, and the scale effect is revealed. Application of this method for studying wave processes in thin polymer films is demonstrated.  相似文献   

16.
《Composite Interfaces》2013,20(5-6):459-477
A simplified calculation method for study of the growth of interfacial debonding between elastic fiber and elastic matrix ahead of the notch-tip in composites under displacement and stress controlled conditions was presented based on the shear lag approach in which the influences of residual stress and frictional shear stress at the debonded interface were incorporated. The calculation method was applied to a model two-dimensional composite. An outline is given of the difference and similarity in the growing behavior of the debonding between the displacement and stress controls, and of the influences of the residual stresses, frictional shear stress, the nature of the final cut component (fiber or matrix) and sample length on the debonding behavior.  相似文献   

17.
The scattering of steady-state SH waves in a bi-material half space with multiple cylindrical elastic inclusions is presented analytically. Mirror method and multi-polar coordinate systems are developed to solve the complex boundary value problem. Considering the displacement and stress continuity conditions, a series of integral equations for unknown coefficients are obtained and solved by truncation. The solution is used to calculate the dynamic stress concentration factor around the edge of the inclusion, and the analysis and numerical results are discussed. The results show that degree of dynamic stress concentration around the circular inclusion is influenced by the incident angle, the incident wave number, and the parameters of medium.  相似文献   

18.
An analytical solution for the scattering of an electromagnetic plane wave from a coated perfect electromagnetic conducting (PEMC) circular cylinder, buried in the dielectric half space, is presented. Scattering characteristics of a buried PEMC cylinder when coated by double-positive (DPS) or double-negative (DNG) materials is investigated. The cylinder as well as coating layer is of infinite length (2-D problem). Plane wave spectral representations of the fields have been used to solve the problem. Saddle point method is used to solve the integral arising in the analysis. All the multiple interactions between the buried geometry and the dielectric interface separating the two half spaces have been considered in the analysis. The derivation includes both TM and TE polarization cases. It is observed that the response of the coated PEMC cylinder can be used to detect the underground pipes and other buried objects having a cylindrical shape.  相似文献   

19.
In the present paper, the probability of creating pairs of scalar particles in an arbitrary plane electromagnetic wave field is calculated. The amplitude of elastic photon scattering in the field of an arbitrary plane electromagnetic wave is calculated by the method of dispersion relations. Special cases of the plane electromagnetic wave field are examined.  相似文献   

20.
彭波  丁天怀  王鹏 《光学学报》2012,32(8):829001-291
纺织纤维的光散射特性在纺织材料微观结构、光学性质以及无损检测中至关重要。利用纺织纤维各向异性的结构特点改进现有的角谱展开法,得到纺织纤维对倾斜入射平面波的散射以及表征其光散射特性的Mueller矩阵。采用蒙特卡罗算法模拟了平行棉纤维束对倾斜入射偏振光的多次散射,并对其计算结果进行了实验验证。结果表明理论计算和实验测量的散射光斑在形状特征、光强分布上均一致,从而验证了蒙特卡洛方法模拟纺织纤维光散射的正确性。结果同时也表明蒙特卡罗方法在纺织材料光传播特性的理论研究中具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号