首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on the coupled nonlinear vibration of vehicle–pavement system. The pavement is modeled as a Timoshenko beam resting on a six-parameter foundation. The vehicle is simplified as a spring–mass–damper oscillator. For the first time, the dynamic response of vehicle–pavement coupled system is studied by modeling the pavement as a Timoshenko beam resting on a nonlinear foundation. Consequently, the shear effects and the rotational inertia of the pavement are included in the modeling process. The pavement model is assumed to be a linear-plus-cubic Pasternak-type foundation. Furthermore, the convergent Galerkin truncation is used to obtain approximate solutions to the coupled vibratory response of the vehicle–pavement coupled system. The dynamic responses of the vehicle–pavement system with the asphalt pavement on soft soil foundation are investigated via the numerical examples. The numerical results show that the calculation for the coupled vibratory response needs high-order modes. Moreover, the coupling effects between the pavement and the vehicle are numerically examined by using the convergent modal truncation. The physical parameters of the vehicle–pavement system such as the shear modulus are compared for determining their influences on the coupled vibratory response.  相似文献   

2.
The vibration of an Euler-Bernoulli beam, resting on a nonlinear Kelvin-Voight viscoelastic foundation, traversed by a moving load is studied in the frequency domain. The objective is to obtain the frequency responses of the beam and the effects of different parameters on the system response. The parameters include the magnitude and speed of the moving load and the foundation nonlinearity and its damping coefficient. The solution is obtained by using the Galerkin method in conjunction with the multiple scales method (MSM). The governing nonlinear partial differential equations of motion are discretized into sets of nonlinear ordinary differential equations. Subsequently, the solution is calculated for different harmonics by using the MSM as one of the powerful perturbation techniques. The steady-state responses of the main harmonic as well as its two super-harmonics are then obtained. As a case study, a conventional railway track is dynamically simulated and the jump phenomenon in the response is observed for three harmonics. Moreover, a thorough stability analysis of the system is carried out.  相似文献   

3.
The present paper investigates the steady-state periodic response of an axially moving viscoelastic beam in the supercritical speed range. The straight equilibrium configuration bifurcates in multiple equilibrium positions in the supercritical regime. It is assumed that the excitation of the forced vibration is spatially uniform and temporally harmonic. Under the quasi-static stretch assumption, a nonlinear integro-partial-differential equation governs the transverse motion of the axially moving beam. The equation is cast in the standard form of continuous gyroscopic systems via introducing a coordinate transform for non-trivial equilibrium configuration. For a beam constituted by the Kelvin model, the primary resonance is analyzed via the Galerkin method under the simply supported boundary conditions. Based on the Galerkin truncation, the finite difference schemes are developed to verify the results via the method of multiple scales. Numerical simulations demonstrate that the steady-state periodic responses exist in the transverse vibration and a resonance with a softening-type behavior occurs if the external load frequency approaches the linear natural frequency in the supercritical regime. The effects of the viscoelastic damping, external excitation amplitude, and nonlinearity on the steady-state response amplitude for the first mode are illustrated.  相似文献   

4.
This study developed a time-domain finite element method to simulate the derailment of trains moving on embankments under seismic loading. The finite element mesh included trains, rails, embankment foundation, soil, and the absorbing boundary condition, where the seismic displacements were applied at the bottom of the mesh. For the cases of a perfectly smooth rail with or without seismic loading, the train derailment coefficients are almost independent of train speeds. However, with minor rail irregularities, they are highly dependent on train speeds. This study also shows that the resonance between the train and earthquake plays an important role in train derailment. The maximum derailment coefficients are quite linear in proportion to the peak ground acceleration (PGA) of the earthquake, if the structural behaviors and dynamic soil properties are not nonlinear.  相似文献   

5.
In this paper, a boundary element method is developed for the geometrically nonlinear response of shear deformable beams of simply or multiply connected constant cross-section, traversed by moving loads, resting on tensionless nonlinear three-parameter viscoelastic foundation, undergoing moderate large deflections under general boundary conditions. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse moving loading as well as to axial loading. To account for shear deformations, the concept of shear deformation coefficients is used. Three boundary value problems are formulated with respect to the transverse displacement, to the axial displacement and to a stress functions and solved using the Analog Equation Method, a Boundary Element based method. Application of the boundary element technique yields a system of nonlinear Differential-Algebraic Equations, which is solved using an efficient time discretization scheme, from which the transverse and axial displacements are computed. The evaluation of the shear deformation coefficient is accomplished from the aforementioned stress function using only boundary integration. Analyses are performed to illustrate, wherever possible, the accuracy of the developed method, to investigate the effects of various parameters, such as the load velocity, load frequency, shear deformation, foundation nonlinearity, damping, on the beam displacements and stress resultants and to examine how the consideration of shear and axial compression affects the response of the system.  相似文献   

6.
This paper developed a finite element method to perform the maglev train–bridge–soil interaction analysis with rail irregularities. An efficient proportional integral (PI) scheme with only a simple equation is used to control the force of the maglev wheel, which is modeled as a contact node moving along a number of target nodes. The moving maglev vehicles are modeled as a combination of spring-damper elements, lumped mass and rigid links. The Newmark method with the Newton–Raphson method is then used to solve the nonlinear dynamic equation. The major advantage is that all the proposed procedures are standard in the finite element method. The analytic solution of maglev vehicles passing a Timoshenko beam was used to validate the current finite element method with good agreements. Moreover, a very large-scale finite element analysis using the proposed scheme was also tested in this paper.  相似文献   

7.
This paper presents the analysis of dynamic deflections of a beam, including the effects of geometric non-linearity, subjected to moving vehicle loads. The beam is assumed to be elastic and simply supported with immovable ends and the vehicles are assumed to be single degree of freedom spring-mass-damper. With the vehicles moving on the beam from one end to the other, the dynamic reflections of the beam and vehicles are computed by using the Galerkin method. Thus the dynamic deflections are assumed to be a set of time functions multiplied by approximate functions, respectively, and the time functions are numerically computed by solving the non-linear differential equations by the Newmark-β method.  相似文献   

8.
A novel model is proposed which comprises of a beam bridge subjected to an axial load and an infinite series of moving loads. The moving loads, whose distance between the neighbouring ones is the length of the beam bridge, coupled with the axial force can lead the vibration of the beam bridge to codimension-two bifurcation. Of particular concern is a parameter regime where non-persistence set regions undergo a transition to persistence regions. The boundary of each stripe represents a bifurcation which can drive the system off a kind of dynamics and jump to another one, causing damage due to the resulting amplitude jumps. The Galerkin method, averaging method, invertible linear transformation, and near identity nonlinear transformations are used to obtain the universal unfolding for the codimension-two bifurcation of the mid-span deflection. The efficiency of the theoretical analysis obtained in this paper is verified via numerical simulations.  相似文献   

9.
This paper examines the nonlinear size-dependent behaviour of single-walled carbon nanotubes (SWCNTs) based on the von-Karman nonlinearity and the nonlocal elasticity theory capable of predicting size effects. To this end, based on Hamilton’s principle in the framework of the nonlocal Euler–Bernoulli beam theory, the equation of motion and associated boundary conditions are derived. Then, with the aid of a high-dimensional Galerkin scheme, the nonlinear partial differential equation of motion of the SWCNT is recast into a reduced-order model. The dynamic response of the system is then investigated for two different types of excitation, namely primary and superharmonic excitations. Eventually, the effect of the slenderness ratio, forcing amplitude, and excitation frequency on the motion characteristics of the system is investigated.  相似文献   

10.
Combining moving least square approximations and boundary integral equations, a meshless Galerkin method, which is the Galerkin boundary node method (GBNM), for twoand three-dimensional infinite elastic solid mechanics problems with traction boundary conditions is discussed. In this numerical method, the resulting formulation inherits the symmetry and positive definiteness of variational problems, and boundary conditions can be applied directly and easily. A rigorous error analysis and convergence study for both displacement and stress is presented in Sobolev spaces. The capability of this method is illustrated and assessed by some numerical examples.  相似文献   

11.
In this paper, a comprehensive assessment of design parameters for various beam theories subjected to a moving mass is investigated under different boundary conditions. The design parameters are adopted as the maximum dynamic deflection and bending moment of the beam. To this end, discrete equations of motion for classical Euler-Bernoulli, Timoshenko and higher-order beams under a moving mass are derived based on Hamilton's principle. The reproducing kernel particle method (RKPM) and extended Newmark-β method are utilized for spatial and time discretization of the problem, correspondingly. The design parameter spectra in terms of the beam slenderness, mass weight and velocity of the moving mass are introduced for the mentioned beam theories as well as various boundary conditions. The results indicate the existence of a critical beam slenderness mostly as a function of beam boundary condition, in which, for slenderness lower than this so-called critical one, the application of Euler-Bernoulli or even Timoshenko beam theories would underestimate the real dynamic response of the system. Moreover, there would be a roughly linear relation between the weight of the moving mass and the design parameters for a certain value of the moving mass velocity in most cases of boundary conditions.  相似文献   

12.
This paper presents the analysis for the transverse vibration of an axially moving finite-length beam inside which two points are supported by rotating rollers. In this study, the rollers are modeled as uniaxial springs in the transverse direction. Hamilton?s principle is applied to derive the equations of motion and boundary conditions of the system. The equations of motion include translational and rotational motions as well as flexible motion. These equations are discretized using Galerkin?s method, and then the dynamic characteristics of a flexible beam with spring supports are studied by solving an eigenvalue problem. The veering phenomenon of natural frequency loci and mode exchanges are investigated for different positions of the springs and various values of the spring stiffness. In addition, the mode localization is also analyzed using the peak amplitude ratio. It is found in this study that the first mode is localized in one of the beam spans if an appropriate value of the spring constant is selected. Furthermore, it is shown that mode localization can be used to reduce the vibration transferred from one span to the other span while a beam moves axially.  相似文献   

13.
We derive and evaluate boundary states for Maxwell’s equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian–Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell’s equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.  相似文献   

14.
A new method is proposed as a solution for the large-scale coupled vehicle–track dynamic model with nonlinear wheel–rail contact. The vehicle is simplified as a multi-rigid-body model, and the track is treated as a three-layer beam model. In the track model, the rail is assumed to be an Euler-Bernoulli beam supported by discrete sleepers. The vehicle model and the track model are coupled using Hertzian nonlinear contact theory, and the contact forces of the vehicle subsystem and the track subsystem are approximated by the Lagrange interpolation polynomial. The response of the large-scale coupled vehicle–track model is calculated using the precise integration method. A more efficient algorithm based on the periodic property of the track is applied to calculate the exponential matrix and certain matrices related to the solution of the track subsystem. Numerical examples demonstrate the computational accuracy and efficiency of the proposed method.  相似文献   

15.
This paper investigates the free vibration of protein microtubules (MTs) embedded in the cytoplasm by using linear and nonlinear Euler–Bernoulli beam model based on modified strain gradient theory. The protein microtubule is modeled as a simply support or clamped–clamped beam. Beside, the elastic medium surrounding of MTs is modeled with Pasternak foundation. Vibration equations are obtained by using Hamilton principle and these equations are solved according to boundary conditions. Finally the dependency of vibration frequencies on environmental conditions, MTs size, changes of temperature and material length scale parameters (size effects) is studied. By comparing the findings, it could be said that the MTs' frequency is greatly increased in the presence of cytoplasm and it is very dependent to material length scale parameters.  相似文献   

16.
The formulation of three-dimensional dynamic behavior of a Beam On Elastic Foundation (BOEF) under moving loads and a moving mass is considered. The weight of the vehicle is modeled as a moving point load, however the effect of the lateral excitation is considered by modeling: (case 1) a lateral moving load with random intensity for wind excitation and (case 2) a moving mass just in lateral direction of the beam for earthquake excitation. A Dirac-delta function is used to describe the position of the moving load and the moving mass along the beam. The beam foundations are considered as elastic Winkler-type in two perpendicular transverse directions. This model is proposed to investigate the bending response of the rails under the effect of traveling vehicle weight while a random excitation such as earthquake or wind takes place. The results showed the importance of considering the effect of earthquake/wind actions as in bending stress of the beam on elastic foundations. The effect of different regions (different support stiffness) and different velocities of the vehicle on the response of the beam are investigated in mentioned directions. At the end, a linear optimal control algorithm with displacement–velocity feedback is proposed as a solution to suppress the response of BOEFs. By the method of modal analyses and taking into account enough number of vibration modes, state-space equation is obtained, then sufficient number of actuators was chosen for each direction. Stochastic analyses were performed in lateral direction in order to illustrate a comprehensive view for the response of the beam under the random moving load in both controlled and uncontrolled systems. Furthermore, the efficiency of control algorithm on critical velocities is verified by parametric analyses in the vertical direction with the constant moving load for different regions.  相似文献   

17.
An axially moving nested cantilever beam is a type of time-varying nonlinear system that can be regarded as a cantilever stepped beam. The transverse vibration equation for the axially moving nested cantilever beam with a tip mass is derived by D’Alembert?s principle, and the modified Galerkin?s method is used to solve the partial differential equation. The theoretical model is modified by adjusting the theoretical beam length with the measured results of its first-order vibration frequencies under various beam lengths. It is determined that the length correction value of the second segment of the nested beam increases as the structural length increases, but the corresponding increase in the amplitude becomes smaller. The first-order decay coefficients are identified by the logarithmic decrement method, and the decay coefficient of the beam decreases with an increase in the cantilever length. The calculated responses of the modified model agree well with the experimental results, which verifies the correctness of the proposed calculation model and indicates the effectiveness of the methods of length correction and damping determination. Further studies on non-damping free vibration properties of the axially moving nested cantilever beam during extension and retraction are investigated in the present paper. Furthermore, the extension movement of the beam leads the vibration displacement to increase gradually, and the instantaneous vibration frequency and the vibration speed decrease constantly. Moreover, as the total mechanical energy becomes smaller, the extension movement of the nested beam remains stable. The characteristics for the retraction movement of the beam are the reverse.  相似文献   

18.
In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.  相似文献   

19.
The dynamic contact problem of a tensioned beam with clamped-pinned ends is analyzed when the beam contacts a moving mass–spring system. The contact and contact loss conditions are expressed in terms of constraint equations after considering the dynamic contact between the beam and the moving mass. Using these constraints and equations of motion for the beam and moving mass, dynamic contact equations are derived and then discretized using the finite element method, which is based on the Lagrange multiplier method. The time responses for the contact forces are computed from these discretized equations. The contact force variations and contact loss are investigated for the variations of the moving mass velocity, the beam tension, the moving mass, and the stiffness of the moving mass–spring system. In addition, the possibility of contact loss and safe contact conditions between the moving mass and the tensioned beam are also studied.  相似文献   

20.
In this paper, a new method for detecting a multi-cracked beam-like structure subjected to a moving vehicle is presented. The crack model is adopted from fracture mechanics. The dynamic response of the bridge-vehicle system is measured directly from the moving vehicle. When moving along the structure, the moving vehicle causes small distortions in the dynamic response of the bridge-vehicle system at the crack locations. In general, these small distortions are difficult to detect visually. However, wavelet transform has recently emerged to be an effective method of detecting such small distortions. Large values (peaks) in the wavelet transform indicate the existence of the cracks. The locations of the cracks are pinpointed by positions of peaks of the wavelet transform and the velocity of the moving vehicle. Numerical results show that the method can detect cracks as small as 10% of the beam height. The proposed method is applicable for low velocity-movements while high velocity-movements are not recommended. The method presents an idea for measuring the vibration directly from the vehicle for crack detection problem in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号