首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In order to widen the application of statistical energy analysis (SEA), a reformulation is proposed. Contrary to classical SEA, the model described here, statistical modal energy distribution analysis (SmEdA), does not assume equipartition of modal energies.Theoretical derivations are based on dual modal formulation described in Maxit and Guyader (Journal of Sound and Vibration 239 (2001) 907) and Maxit (Ph.D. Thesis, Institut National des Sciences Appliquées de Lyon, France 2000) for the general case of coupled continuous elastic systems. Basic SEA relations describing the power flow exchanged between two oscillators are used to obtain modal energy equations. They permit modal energies of coupled subsystems to be determined from the knowledge of modes of uncoupled subsystems. The link between SEA and SmEdA is established and make it possible to mix the two approaches: SmEdA for subsystems where equipartition is not verified and SEA for other subsystems.Three typical configurations of structural couplings are described for which SmEdA improves energy prediction compared to SEA: (a) coupling of subsystems with low modal overlap, (b) coupling of heterogeneous subsystems, and (c) case of localized excitations.The application of the proposed method is not limited to theoretical structures, but could easily be applied to complex structures by using a finite element method (FEM). In this case, FEM are used to calculate the modes of each uncoupled subsystems; these data are then used in a second step to determine the modal coupling factors necessary for SmEdA to model the coupling.  相似文献   

2.
Statistical modal Energy distribution Analysis (SmEdA) can be used as an alternative to Statistical Energy Analysis for describing subsystems with low modal overlap. In its original form, SmEdA predicts the power flow exchanged between the resonant modes of different subsystems. In the case of sound transmission through a thin structure, it is well-known that the non resonant response of the structure plays a significant role in transmission below the critical frequency. In this paper, we present an extension of SmEdA that takes into account the contributions of the non resonant modes of a thin structure. The dual modal formulation (DMF) is used to describe the behaviour of two acoustic cavities separated by a thin structure, with prior knowledge of the modal basis of each subsystem. Condensation in the DMF equations is achieved on the amplitudes of the non resonant modes and a new coupling scheme between the resonant modes of the three subsystems is obtained after several simplifications. We show that the contribution of the non resonant panel mode results in coupling the cavity modes of stiffness type, characterised by the mode shapes of both the cavities and the structure. Comparisons with reference results demonstrate that the present approach can take into account the non resonant contributions of the structure in the evaluation of the transmission loss.  相似文献   

3.
尹剑飞  温激鸿  肖勇  温熙森 《物理学报》2015,64(13):134301-134301
统计能量分析(statistical energy analysis, SEA)是复杂耦合系统中、高频动力学特性计算的有力工具. 本文以波传播理论和SEA的基本原理为基础, 研究周期加筋板中弯曲波传播特性. 分析了周期结构的频率带隙特性和加强筋对板上弯曲波的滤波特性对SEA计算结果的影响规律, 发现经典SEA由于忽视了加筋板中物理上不相邻子系统间存在的能量隧穿效应, 而导致响应预测结果产生最高近 40 dB的误差. 为了解决这一问题, 本文应用高级统计能量分析(advanced statistical energy analysis, ASEA)方法, 考虑能量在不相邻子系统间的传递、转移和转化的物理过程, 从而大幅提高子系统响应的预测精度, 将误差在大部分频段降低至小于5 dB. 设计了模拟简支边界条件的加筋板振动测试实验装置, 实验测试结果与有限元结果符合较好, 对理论模型进行了验证.  相似文献   

4.
This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models.  相似文献   

5.
This analysis is concerned with the derivation of a "diffuse field" reciprocity relationship between the diffuse field excitation of a connection to a structural or acoustic subsystem and the radiation impedance of the connection. Such a relationship has been derived previously for connections described by a single degree of freedom. In the present work it is shown that the diffuse-field reciprocity relationship also arises when describing the ensemble average response of connections to structural or acoustic subsystems with uncertain boundaries. Furthermore, it is shown that the existing diffuse-field reciprocity relationship can be extended to encompass connections that possess an arbitrary number of degrees of freedom. The present work has application to (i) the calculation of the diffuse field response of structural-acoustic systems modeled by Finite Elements, Boundary Elements, and Infinite Elements; (ii) the general calculation of the Coupling Loss Factors employed in Statistical Energy Analysis (SEA); and (iii) the derivation of an alternative analysis method for describing the dynamic interactions of coupled subsystems with uncertain boundaries (a generalized "boundary" approach to SEA).  相似文献   

6.
In the statistical energy analysis (SEA) of high frequency noise and vibration, a complex engineering structure is represented as an assembly of subsystems. The response of the system to external excitation is expressed in terms of the vibrational energy of each subsystem, and these energies are found by employing the principle of power balance. Strictly the computed energy is an average taken over an ensemble of random structures, and for many years there has been interest in extending the SEA prediction to the variance of the energy. A variance prediction method for a general built-up structure is presented here. Closed form expressions for the variance are obtained in terms of the standard SEA parameters and an additional set of parameters alpha(k) that describe the nature of the power input to each subsystem k, and alpha(ks) that describe the nature of the coupling between subsystems k and s. The theory is validated by comparison with Monte Carlo simulations of plate networks and structural-acoustic systems.  相似文献   

7.
8.
The response of two general spring-coupled elements is investigated to develop a unifying approach to the weak coupling criterion in Statistical Energy Analysis (SEA). First, the coupled deterministic equations of motion are expressed in the bases given by the uncoupled elements’ eigenmodes. Then, an iterative solution is expressed as a succession of exchanges between elements, where uncoupled motion provides the start approximation, converging if the ‘coupling eigenvalue’ is less than unity, in which case coupling is said to be weak. This definition is related to whether response is ‘local’ or ‘global’, encompassing a number of previously defined coupling strength definitions, applying for deterministically described structures. A stochastic ensemble is defined by that its members are equal to the investigated structure but the elements have random frequencies. It is required that the coupling eigenvalue be less than unity for all members of the ensemble. This requirement generates the title subject of the article: ‘the modal interaction strength’. It is similar to the previously defined coupling strength criterion characterising the ensemble average energy flow in uni-dimensional waveguides. Finally, SEA models are formulated in terms of the uncoupled elements’ modal data.  相似文献   

9.
自由阻尼复合板的模态密度研究   总被引:2,自引:0,他引:2       下载免费PDF全文
模态密度是统计能量分析(SEA)的一个重要参数,尽管有关阻尼复合板振动特性的文献很多,便至今为止,研究其模态密度及变化规律的论文尚未见到,为此本文利用弹性最小势能原理和变分法,并考虑振动阻尼的影响,导出了自由阻尼复合板的弯曲振动模态密度计算公式,系统地分析了模态密度随阻尼层厚度、温度和频率而变化的规律。  相似文献   

10.
Finite element methods, experimental statistical energy analysis (ESEA) and Monte Carlo methods have been used to determine coupling loss factors for use in statistical energy analysis (SEA). The aim was to use the concept of an ESEA ensemble to facilitate the use of SEA with plate subsystems that have low modal density and low modal overlap. An advantage of the ESEA ensemble approach was that when the matrix inversion failed for a single deterministic analysis, the majority of ensemble members did not encounter problems. Failure of the matrix inversion for a single deterministic analysis may incorrectly lead to the conclusion that SEA is not appropriate. However, when the majority of the ESEA ensemble members have positive coupling loss factors, this provides sufficient motivation to attempt an SEA model. The ensembles were created using the normal distribution to introduce variation into the plate dimensions. For plate systems with low modal density and low modal overlap, it was found that the resulting probability distribution function for the linear coupling loss factor could be considered as lognormal. This allowed statistical confidence limits to be determined for the coupling loss factor. The SEA permutation method was then used to calculate the expected range of the response using these confidence limits in the SEA matrix solution. For plate systems with low modal density and low modal overlap, relatively small variation/uncertainty in the physical properties caused large differences in the coupling parameters. For this reason, a single deterministic analysis is of minimal use. Therefore, the ability to determine both the ensemble average and the expected range with SEA is crucial in allowing a robust assessment of vibration transmission between plate systems with low modal density and low modal overlap.  相似文献   

11.
This paper describes the modal interaction between a panel and a heavy fluid cavity when the panel is excited by a broad band force in a given frequency band. The dual modal formulation (DMF) allows describing the fluid–structure coupling using the modes of each uncoupled subsystem. After having studied the convergence of the modal series on a test case, we estimate the modal energies and the total energy of each subsystem. An analysis of modal energy distribution is performed. It allows us to study the validity of SEA assumptions for this case. Added mass and added stiffness effects of the fluid are observed. These effects are related to the non-resonant acoustic modes below and above the frequency band of excitation. Moreover, the role of the spatial coupling of the resonant cavity modes with the non-resonant structure modes is also highlighted. As a result, the energy transmitted between the structure and the heavy fluid cavity generally cannot be deduced from the SEA relation established for a light fluid cavity.  相似文献   

12.
This paper attempts to introduce a new point of view on energy analysis in structural dynamics with particular emphasis to its link with uncertainty and complexity. A linear, elastic system undergoing free vibrations, is considered. The system is subdivided into two subsystems and their respective energies together with the shared energy flow are analysed.First, the ensemble energy average of the two subsystems, assuming uncertain the natural frequencies, is investigated. It is shown how the energy averages follow a simple law when observing the long-term response of the system, obtained by a suitable asymptotic expansion. The second part of the analysis shows how the ensemble energy average of a set of random samples is representative even of the single case if the system is complex enough.The two previous points, combined, produce a result that applies to the energy sharing between two subsystems even independently of uncertainty: for complex systems, a simple energy sharing law is indeed stated. Moreover, in the case of absence of damping, a nonlinear relation between the energy flow and the energy (weighted) difference between the two subsystems is derived; on the other hand, when damping is present, this relationship becomes linear, including two terms: one is proportional to the energy (weighted) difference between the two subsystems, the other being proportional to its time derivative. Therefore, the approach suggests a way for deriving a general approach to energy sharing in vibration with results that, in some cases, are reminiscent of those met in Statistical Energy Analysis.Finally, computational experiments, performed on systems of increasing complexity, validate the theoretical results.  相似文献   

13.
《Applied Acoustics》1987,22(4):281-295
The sound transmission loss of a single metal panel obtained with the sound intensity technique and the conventional method have been compared with the theoretical model of Statistical Energy Analysis (SEA). This method of comparison with a theoretical model is useful in order to explain small systematic deviations between the results of both experimental methods.It happens that the difference between the so-called residual reactivity level and the measured reactivity gives a good estimate of the accuracy of the intensity measurement. Even in very simple cases this quantity can disturb the measuring results due to the complex sound field close to the sound radiating panel. By correcting the sound transmission loss results with the well known Waterhouse correction and by choosing an appropriate probe distance to the sound radiating construction, good agreement is obtained between the results of both experimental methods as well as with the SEA model.  相似文献   

14.
Comparisons between the experimental and predicted sound transmission loss values obtained from statistical energy analysis are presented for two foam-filled honeycomb sandwich panels. Statistical energy analysis (SEA) is a modeling procedure which uses energy flow relationships for the theoretical estimation of the sound transmission through structures in resonant motion. The accuracy of the prediction of the sound transmission loss using SEA greatly depends on accurate estimates of: (1) the modal density, (2) the internal loss factor, and (3) the coupling loss factor parameters of the structures. A theoretical expression for the modal density of sandwich panels is developed from a sixth-order governing equation. Measured modal density estimates of the two foam-filled honeycomb sandwich panels are obtained by using a three-channel spectral method with a spectral mass correction to allow for the mass loading of the impedance head. The effect of mass loading of the accelerometer is corrected in the estimations of both the total loss factor and radiation loss factor of the sandwich panels.  相似文献   

15.
16.
Finding the distribution of vibro-acoustic energy in complex built-up structures in the mid-to-high frequency regime is a difficult task. In particular, structures with large variation of local wavelengths and/or characteristic scales pose a challenge referred to as the mid-frequency problem. Standard numerical methods such as the finite element method (FEM) scale with the local wavelength and quickly become too large even for modern computer architectures. High frequency techniques, such as statistical energy analysis (SEA), often miss important information such as dominant resonance behavior due to stiff or small scale parts of the structure. Hybrid methods circumvent this problem by coupling FEM/BEM and SEA models in a given built-up structure. In the approach adopted here, the whole system is split into a number of subsystems that are treated by either FEM or SEA depending on the local wavelength. Subsystems with relative long wavelengths are modeled using FEM. Making a diffuse field assumption for the wave fields in the short wave length components, the coupling between subsystems can be reduced to a weighted random field correlation function. The approach presented results in an SEA-like set of linear equations that can be solved for the mean energies in the short wavelength subsystems.  相似文献   

17.
This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.  相似文献   

18.
In this paper, Statistical Energy Analysis (SEA) is used to predict the interior noise of an acoustic cavity of elongated shape. The disadvantage of the conventional SEA method, which quantifies the response in terms of the energy averaged over each subsystem, is overcome by introducing a one-dimensional spatial decay relation, through which information about the acoustic energy variation in the elongated direction is taken into account. The modified SEA is experimentally validated using a 1:5 scaled space station prototype, having the longitudinal dimension much larger than the cross-sectional dimension. It is also compared with a model reported in the literature. It is shown that, in the region where the acoustic pressure level decays at a constant rate, the two models agree well with each other and are capable of estimating the acoustic pressure variation along the space station cabin. However, near the end walls where the decay rate of the acoustic pressure level is not constant, the proposed model provides better accuracy.  相似文献   

19.
20.
At high frequencies it is often desirable to describe the behaviour of a structure in terms of subsystem energies. The most important method used for high frequency analysis is statistical energy analysis (SEA). Recently, the frequency range in which finite element analysis is applied is being extended to higher frequencies resulting in SEA-like analysis. Methods such as energy distribution modelling can be used to obtain the matrix of energy influence coefficients (EICs); the EIC matrix can be inverted to estimate SEA-like “apparent” coupling loss factors (ACLFs). The ACLFs so estimated depend on details of global modal properties, especially at low and moderate modal overlap. This has implications for design modifications, for example by adding damping treatment to one subsystem, since generally all the EICs change and hence so do all the ACLFs. In principle a full re-analysis is required; this is in contrast to classical SEA. This paper describes these problems and their causes and approximations to the SEA-like parameters of the modified system are proposed. Estimates of the response of the structure after modifications can be found without full re-analysis, leading to a computationally efficient method. The case studies show good agreement between the estimates based on the proposed approaches and the ones based on full re-analysis. The net outcome is that the ACLFs can be estimated after the modification has been made in a manner similar to conventional SEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号