首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation of the radical mechanism of the peroxidase oxidation of monomeric phenols (vanillin, vanillyl alcohol, isoeugenol, and α-quaiacylpropanone) has been made by the chemiluminescence method. It has been established that chemiluminescence is observed in those compounds that contain hydroxy or carbonyl groups on a carbon atom in the α position or have a C=C bond in the β position conjugated with the aromatic ring. The hypothesis has been put forward that peroxide compounds are inhibitors of autocatalytic processes in the oxidation of lignin in the presence of peroxidase.  相似文献   

2.
Correlations have been established which permit the theoretical prediction and analysis of oxidation-reduction and acid-base properties on the basis of calculated quantum-chemical data for compounds modeling a structural unit of lignin of the guiacyl type.  相似文献   

3.
4.
Compounds acting as model biphenyl and phenylcoumarane structural units in the lignin molecule (dehydrodivanillin and dehydrodiisoeugenol) were investigated by thermal analysis. The results were compared with previously obtained data on the thermal degradation of model phenylpropane monomer units of lignin. It was found that the mechanism of thermal degradation of these models and the thermal stabilities of the bonds depend on the structure. The thermal stability of the models increases in the absence of reactive functional groups in the side chain.
Zusammenfassung Modellverbindungen mit Biphenyl und Phenylcumaran Bindungen im Lignin wie Dehydrodivanillin und Dehydrodiisoeugenol wurden einer thermoanalytischen Prüfung unterworfen und die Ergebnisse mit jenen der thermischen Zersetzung von Phenylpropan-monomeren Modellen des Lignins verglichen. Es wurde festgestellt, daß der Mechanismus der thermischen Zersetzung und die thermische Stabilität der Bindungen strukturabhängig sind. Die thermische Stabilität der Modelle nahm mit Abwesenheit reaktionsfähiger funktioneller Gruppen an der Seitenkette ab. Die Bindung vom Typ des Phenylcumarans ist thermisch am stabilsten. Das Zerreissen der Bindungen scheint durch einen Mechanismus durch freie Radikale zu erfolgen.

Résumé Étude thermique de composés modèles pour les liaisons structurales de type diphényle et phénylcoumaranne dans la molécule de lignine (déhydrodivanilline et déhydrodiisoeugénol). Comparaison des résultats avec ceux obtenus précédemment dans le cas de la dégradation thermique de composés servant de modèles pour les unités monomères de phénylpropane dans la lignine. Détermination du mécanisme de la dégradation thermique de ces modèles et de la stabilité thermique des liaisons suivant la structure. La stabilité thermique augmente en l'absence de groupes fonctionnels réactifs dans la chaîne latérale. La liaison de type phénylcoumaranne est thermiquement la plus stable. On suppose un mécanisme avec radical libre pour la rupture des liaisons structurales.

, ( ). . , - . . . - .
  相似文献   

5.
The flash vacuum pyrolysis (FVP) of methoxy-substituted beta-O-4 lignin model compounds has been studied at 500 degrees C to provide mechanistic insight into the primary reaction pathways that occur under conditions of fast pyrolysis. FVP of PhCH(2)CH(2)OPh (PPE), a model of the dominant beta-O-4 linkage in lignin, proceeds by C-O and C-C cleavage, in a 37:1 ratio, to produce styrene plus phenol as the dominant products and minor amounts of toluene, bibenzyl, and benzaldehyde. From the deuterium isotope effect in the FVP of PhCD(2)CH(2)OPh, it was shown that C-O cleavage occurs by homolysis and by 1,2-elimination in a ratio of 1.4:1, respectively. Methoxy substituents enhance the homolysis of the beta-O-4 linkage, relative to PPE, in o-CH(3)O-C(6)H(4)OCH(2)CH(2)Ph (o-CH(3)O-PPE) and (o-CH(3)O)(2)-C(6)H(3)OCH(2)CH(2)Ph ((o-CH(3)O)(2)-PPE) by a factor of 7.4 and 21, respectively. The methoxy-substituted phenoxy radicals undergo a complex series of reactions, which are dominated by 1,5-, 1,6-, and 1,4-intramolecular hydrogen abstraction, rearrangement, and beta-scission reactions. In the FVP of o-CH(3)O-PPE, the dominant product, salicylaldehyde, forms from the methoxyphenoxy radical by a 1,5-hydrogen shift to form 2-hydroxyphenoxymethyl radical, 1,2-phenyl shift, and beta-scission of a hydrogen atom. The 2-hydroxyphenoxymethyl radical can also cleave to form formaldehyde and phenol in which the ratio of 1, 2-phenyl shift to beta-scission is ca. 4:1. In the FVP of o-CH(3)O-PPE and (o-CH(3)O)(2)-PPE, products (ca. 20 mol %) are also formed by C-O homolysis of the methoxy group. The resulting phenoxy radicals undergo 1,5- and 1,6-hydrogen shifts in a ratio of ca. 2:1 to the aliphatic or benzylic carbon, respectively, of the phenethyl chain. In the FVP of (o-CH(3)O)(2)-PPE, o-cresol was the dominant product. It was formed by decomposition of 2-hydroxy-3-hydroxymethylbenzaldehyde and 2-hydroxybenzyl alcohol, which are formed from a complex series of reactions from the 2, 6-dimethoxyphenoxy radical. The key step in this reaction sequence was the rapid 1,5-hydrogen shift from 2-hydroxy-3-methoxybenzyloxy radical to 2-hydroxymethyl-6-methoxyphenoxy radical before beta-scission of a hydrogen atom to give the substituted benzaldehyde. The 2-hydroxybenzyl alcohols rapidly decompose under the reaction conditions to o-benzoquinone methide and pick up hydrogen from the reactor walls to form o-cresol.  相似文献   

6.
The results of MNDO geometry optimizations on selected H? (SiH2)n? H polysilane model compounds are presented. Near energetic degeneracy is indicated for all-trans(T), alternating gauchetrans (GT), and all-gauche (G+G+) models (n = 10). The most stable (T) and least stable (G+G+) conformations are separated by only ca. 0.11 eV. The existence of low-energy barriers to moderate structural distortion is also suggested. Orbital localizations and charge density distributions along the “polymer” backbone are found to be sensitive functions of such distortion. The ground-state electronic distribution of the saturated all-trans silane chains are calculated to be considerably more polarizable than the fully conjugated H? (CH)n? H π-electron framework of comparable length. The one-electron HOMO → LUMO excitation can be viewed essentially as an in-plane Si 3p → Si3s + H1s intramolecular charge transfer transition. The qualitatively different atomic orbital character of the HOMO and LUMO levels yields transition moment components for the separate repeat units which are relatively small. In the case of the rigidly trans conformation, the phase relationships of the transition moment terms are such as to constructively sum to a large net value reflecting strong optical absorption, as is observed experimentally.  相似文献   

7.
Quantum-chemical calculations of the electronic structures of the phenolate ions of compounds modeling lignin in the ground and electronically excited states have been made by the CNDO/S method. The intramolecular electron donor-acceptor interactions in the phenolate anion on excitation and the nature of the lowest electronically excited states are discussed on the basis of the results obtained.Siberian Scientific-Research Institute of Pulp and Board, Bratsk. A. A. Zhdanov Irkutsk State University. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 275–282, March–April, 1988.  相似文献   

8.
Quantum-chemical calculations of the electronic structure of molecules of model compounds of lignin in the ground and electronically excited states have been made by the CNDO/S method. The paper gives results on the energies and strengths of the oscillators of the electronic transitions and on the type of excited singlet and triplet states, shows the main configurations of the HOMOs and LUMOs participating in the transitions and their energies and statistical weights, and gives the distribution of charges and their redistribution on the passage of the molecules from the ground into the excited states. Donor-acceptor interactions in the molecules under investigation are discussed on the basis of the results obtained.Siberian Scientific-Research Institute of Pulp and Board, Bratsk. A. A. Zhdanov Irkutsk State University. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 265–274, March–April, 1988.  相似文献   

9.
以Raney Ni为催化剂,研究了甲醇水相重整制氢与木质素降解模型化合物愈创木酚/苯酚加氢的耦合反应.考察了反应前冷压、反应温度、反应时间、物料配比等条件对木质素降解模型化合物原位加氢反应性能的影响,并对影响机制进行了讨论.结果表明,在反应温度为220 ℃、反应前冷压0 MPa(表压)、物料比水/甲醇/模型化合物为20∶5∶0.8的条件下,反应7 h后愈创木酚转化率与环己醇选择性分别达99.00%和93.74%,反应12 h后苯酚的转化率与环己醇选择性分别达90.50%和99.29%.采用原位加氢反应,木质素降解的酚类模型化合物转化率和选择性明显优于外部供氢反应的转化率和选择性,同时,避免了外部供氢反应存在的氢气制备、储存、传输及加氢条件苛刻等问题,为木质素解聚产物制备化工品提供了新思路与实验基础.  相似文献   

10.
11.
随着化石能源的不断枯竭,以及所产生的环境问题-温室效应及其高硫含量引起的酸雨,迫使人类寻找新型替代能源.在众多可再生能源中,生物质因其碳中性,易获取,作为唯一可转化为液体燃料的可再生资源,正日益受到重视.全球每年生物质产出高达1.7×1011t,其中,含75%的碳水化合物如纤维素、甲壳素和淀粉,20%木质素,其他占  相似文献   

12.
Photo- and radiation chemical induced degradation of lignin model compounds   总被引:3,自引:0,他引:3  
The basic mechanistic aspects of the photo- and radiation chemistry of lignin model compounds (LMCs) are discussed with respect to important processes related to lignin degradation. Several reactions occur after direct irradiation, photosensitized or radiation chemically induced oxidation of LMCs. Direct irradiation studies on LMCs have provided supportive evidence for the involvement of hydrogen abstraction reactions from phenols, beta-cleavage of substituted alpha-aryloxyacetophenones and cleavage of ketyl radicals (formed by photoreduction of aromatic ketones or hydrogen abstraction from arylglycerol beta-aryl ethers) in the photoyellowing of lignin rich pulps. Photosensitized and radiation chemically induced generation of reactive oxygen species and their reaction with LMCs are reviewed. The side-chain reactivity of LMC radical cations, generated by radiation chemical means, is also discussed in relation with the enzymatic degradation of lignin.  相似文献   

13.
采用密度泛函理论B3P86方法,在6-31G(d,p)基组水平上,对木质素结构中的6种连接方式(β-O-4、α-O-4、4-O-5、β-1、α-1、5-5)的63个木质素模化物的醚键(C-O)和C-C键的键离解能EB进行了理论计算研究。分析了不同取代基对键离解能的影响以及键长与键离解能的相关性。计算结果表明,C-O键的键离解能通常比C-C键的小,在各种醚键中Cα-O键的平均键离解能最小,为182.7 kJ/mol;其次是β-O-4连接中的Cβ-O键,苯环和烷烃基上的取代基对醚键的键离解能有较强的弱化作用,C-O键的键长和键离解能的相关性较差。与C-O键相比,C-C键的键离解能受苯环上取代基的影响很小,而烷烃基上的取代基对C-C键的键离解能有较大的影响,C-C键的键离解能和键长之间存在较强的线性关系,C-C键的键长越长,其键离解能越小。  相似文献   

14.
15.
16.
17.
The reaction of formaldehyde with lignin model compounds in acidic medium was shown to give fast crosslinking of alkyl-substituted phenolic and etherified phenolic lignin model compounds at positions meta to the aromatic hydroxy groups. This reaction differs from the reaction of formaldehyde with phenolic lignin model compounds in alkaline conditions, where the reaction with formaldehyde always occurs at positions ortho/para to the aromatic hydroxy group., The reaction of formaldehyde with lignin in acidic medium have considerable potential for the crosslinking of lignin, particularly heavily condensed alkali lignin, for use in polymeric products.  相似文献   

18.
19.
Phenolic 2-arylcoumarans 16 were used to examine the behaviors of β-5 subunits in lignin during tetramethylammonium hydroxide (TMAH) thermochemolysis. Products were monitored by gas chromatography/mass spectrometry. The process predominantly provided dimeric products with the opened hydrofuran ring. Substituent changes at the γ-position of ring A and at the 5-position of ring B had a large effect on the product compositions. 2-Arylcoumarans 1 and 6 with the γ-CH2OH substituent predominantly gave 2,3,3′,4′-tetramethoxystilbenes involving the elimination of the γ-CH2OH substituent, while 25 with the γ-CH3 substituent gave a mixture of 2,3,3′,4′-tetramethoxy-α-methylstilbenes and α-methoxy-α-(3′,4′-dimethoxyphenyl)-β-(2,3-dimethoxyphenyl)propanes. Substituent –CHCHCH3 on ring B remained unaffected. Substituents –CHCHCH2OH and –COOH on ring B produced the corresponding methyl ether and ester, respectively, by methylation. The –CHCHCHO substituent on ring B was converted to the –CHO substituent.  相似文献   

20.
The catalytic pyrolysis mechanism of the initial lignin depolymerization products will help us develop biomass valorization strategies. How does isomerism influence reactivity, product formation, selectivities, and side reactions? By using imaging photoelectron photoion coincidence (iPEPICO) spectroscopy with synchrotron radiation, we reveal initial, short-lived reactive intermediates driving benzenediol catalytic pyrolysis over H-ZSM-5 catalyst. The detailed reaction mechanism unveils new pathways leading to the most important products and intermediates. Thanks to the two vicinal hydroxyl groups, catechol (o-benzenediol) is readily dehydrated to form fulvenone, a reactive ketene intermediate, and exhibits the highest reactivity. Fulvenone is hydrogenated on the catalyst surface to phenol or is decarbonylated to produce cyclopentadiene. Hydroquinone (p-benzenediol) mostly dehydrogenates to produce p-benzoquinone. Resorcinol, m-benzenediol, is the most stable isomer, because dehydration and dehydrogenation both involve biradicals owing to the meta position of the hydroxyl groups and are unfavorable. The three isomers may also interconvert in a minor reaction channel, which yields small amounts of cyclopentadiene and phenol via dehydroxylation and decarbonylation. We propose a generalized reaction mechanism for benzenediols in lignin catalytic pyrolysis and provide detailed mechanistic insights on how isomerism influences conversion and product formation. The mechanism accounts for processes ranging from decomposition reactions to molecular growth by initial polycyclic aromatic hydrocarbon (PAH) formation steps to yield, e.g., naphthalene. The latter involves a Diels–Alder dimerization of cyclopentadiene, isomerization, and dehydrogenation.

Detection of reactive intermediates with synchrotron radiation and photoelectron photoion coincidence methods reveals new mechanistic insights into lignin catalytic pyrolysis. Here we focus on how the isomerism changes the conversion and product formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号