首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Exploring a recently developed mesoscale continuum theory of dislocation dynamics, we derive three predictions about plasticity and grain boundary formation in crystals. (1) There is a residual stress jump across grain boundaries and plasticity-induced cell walls as they form, which self-consistently acts to attract neighboring dislocations; residual stress in this theory appears as a remnant of the driving force behind wall formation under both polygonization and plastic deformation. We derive the predicted asymptotic late-time dynamics of the grain-boundary formation process. (2) During grain boundary formation at high temperatures, there is a predicted cusp in the elastic energy density. (3) In early stages of plasticity, when only one type of dislocation is active (single-slip), cell walls do not form in the theory; instead we predict the formation of a hitherto unrecognized jump singularity in the dislocation density.  相似文献   

3.
4.
Mass conservation and linear momentum balance relations for a porous body and any fluid therein, valid at any given length scale in excess of nearest-neighbour molecular separations, are established in terms of local weighted averages of molecular quantities. The mass density field for the porous body at a given scale is used to identify its boundary at this scale, and a porosity field is defined for any pair of distinct length scales. Specific care is paid to the interpretation of the stress tensor associated with each of the body and fluid at macroscopic scales, and of the force per unit volume each exerts on the other. Consequences for the usual microscopic and macroscopic viewpoints are explored.Nomenclature material system; Section 2.1. - porous body (example of a material system); Sections 2.1, 3.1, 4.1 - fluid body (example of a material system); Sections 2.1, 3.1, 4.1 - weighting function; Sections 2.1, 2.3 - ,h weighting function corresponding to spherical averaging regions of radius and boundary mollifying layer of thicknessh; Section 3.2 - Euclidean space; Section 2.1 - V space of all displacements between pairs of points in; Section 2.1 - mass density field corresponding to; (2.3)1 - P , f mass density fields for , ; (4.1) - P momentum density field corresponding to; (2.3)2 - v velocity field corresponding to; (2.4) - S r (X) interior of sphere of radiusr with centre at pointx; (3.3) - boundary ofany region - region in which p > 0 with = ,h; (3.1) - subset of whose points lie at least+h from boundary of ; (3.4) - abbreviated versions of ; Section 3.2, Remark 4 - strict interior of ; (3.7) - analogues of for fluid system ; Section 3.2 - general version of corresponding to any choice of weighting function; (4.6) - interfacial region at scale; (3.8) - 0 scale of nearest-neighbour separations in ; Section 3.2. Remark 1 - porosity field at scales ( 1; 2); (3.9) - pore space at scales ( 1; 2); (3.12)  相似文献   

5.
The continuum notions of effective mechanical quantities as well as the conditions that give meaningful deformation processes for homogenization problems with large deformations are reviewed. A continuum homogenization model is presented and recast as a Lagrangian-based approach for heterogeneous media that allows for an extension to discrete systems simulated via molecular dynamics (MD). A novel constitutive relation for the effective stress is derived so that the proposed Lagrangian-based approach can be used for the determination of the “stress–deformation” behavior of particle systems. The paper is concluded with a careful comparison between the proposed method and the Parrinello–Rahman approach to the determination of the “stress–deformation” behavior for MD systems. When compared with the Parrinello–Rahman method, the proposed approach clearly delineates under what conditions the Parrinello–Rahman scheme is valid.  相似文献   

6.
7.
Zhang  Jin 《Meccanica》2019,54(14):2281-2293

Understanding of the elastic deformation behaviours of recently synthesised carbon nanorings (CNRs) is crucial in guiding their future applications, because the strain engineering provides an efficient means to modify their physical and chemical properties. In this paper, by using molecular dynamics simulations and nonlocal continuum mechanics models, we study the elastic deformations of CNRs with three different molecular structures, i.e., cycloparaphenylenes (CPPs), [4]cyclochrysenylenes and cyclacenes. Our results show that, compared to other two types of CNRs, CPPs have the smallest mechanical stiffness, which is attributed to the influence of numerous weak connecting carbon–carbon bonds existing between their component benzene rings. In addition to the molecular structure, the elastic deformation behaviours of CNRs are also found to strongly depend on the size. Specifically, the compressive stiffness of CNRs is found to increase as their size (radius) decreases. Meanwhile, the size reduction of CNRs can trigger the anisotropy of their compressive stiffness and can also aggravate the influence of small-scale effects on their elastic deformation behaviours, which can significantly reduce the compressive stiffness.

  相似文献   

8.
9.
This study develops a novel continuum model with consideration of the effect of electronic throttle (ET) dynamics to capture the behaviour of vehicles in traffic flow. In particular, the continuum model is proposed by incorporating the opening angle of ET based on the throttle-based full velocity difference model. Theoretical analyses including stability, negative velocity and shock wave are performed systematically. Numerical experiments and comparisons are conducted to verify the performance of the proposed continuum model. Results show that the steady-state performance of the proposed model is improved with respect to the stability. In addition, the proposed model is effective to rapidly dissipate the effect of external perturbation. Also, the phenomenon of negative velocity can be avoided by the proposed model.  相似文献   

10.
11.
In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = fo/fs = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.  相似文献   

12.
13.
14.
Aeroacoustic resonant oscillations (aeolian tones) are studied for flow past two plates forming a cross in a square cross section channel. Possible oscillation modes are classified on the basis of admissible symmetry groups and the existence of the modes is proved. The infinite linear system of equations for these modes obtained by the sewing method was simplified and studied numerically. Curves of eigenfrequency versus plate length are constructed. The form of the eigenfunctions is studied.  相似文献   

15.
16.
In a recent publication Bühler (Heat Mass Transfer 39:631–638, 2003) reported new results for conduction regime flow between vertical differentially-heated walls that provide a continuum of solutions between capped and open ends. In this paper we extend Bühler’s work to realize a continuum of solutions of convection regime flow using empirical results for the vertical temperature gradient that develops in tall aspect ratio geometries. The mass flux is determined analytically for this three-parameter family of solutions. Identical viscous and thermal boundary layers exist at the opposing walls when the cavity is capped. However, as the flow evolves to one with open ends, there is an intensification (attenuation) of the boundary layers near the hot (cold) walls. In the limit corresponding to an open-ended cavity, the boundary layer at the cold wall vanishes altogether.  相似文献   

17.
On continuum thermodynamics   总被引:1,自引:0,他引:1  
Within the scope of classical continuum thermodynamics, we elaborate on the basic concepts and adopt a different approach from usual to the formulation of conservation laws and an entropy production inequality, both for a single phase continuum and for a mixture of any number of constituents. These conservation laws and the entropy inequality can be regarded as applicable to both local and nonlocal problems. In the case of a single phase continuum and for a simple material which is homogeneous in its reference configuration, under fairly mild smoothness assumptions, we prove that all the conservation laws reduce to the usual classical ones and the entropy production inequality reduces to the Clausius-Duhem inequality. Some attention is given to possible redundancies in the basic concepts, as well as to alternative forms of the energy equation and the entropy inequality. The latter is particularly significant in regard to different but equivalent formulations of mixture theory.  相似文献   

18.
Multipolar continuum mechanics   总被引:9,自引:0,他引:9  
A general theory of multipolar displacement and velocity fields with corresponding multipolar body and surface forces and multipolar stresses is developed using an energy principle, an entropy production inequality and invariance conditions under superposed rigid body motions. Constitutive equations for the multipolar stresses are discussed and explicit results are given for an elastic medium. Work in a previous paper by the present authors (1964) is shown to be a special case of that given here.  相似文献   

19.
Nonlocal continuum mechanics   总被引:1,自引:0,他引:1  
  相似文献   

20.
Geometric Continuum Mechanics ( GCM) is a new formulation of Continuum Mechanics ( CM) based on the requirement of Geometric Naturality ( GN). According to GN, in introducing basic notions, governing principles and constitutive relations, the sole geometric entities of space-time to be involved are the metric field and the motion along the trajectory. The additional requirement that the theory should be applicable to bodies of any dimensionality, leads to the formulation of the Geometric Paradigm ( GP) stating that push-pull transformations are the natural comparison tools for material fields. This basic rule implies that rates of material tensors are Lie-derivatives and not derivatives by parallel transport. The impact of the GP on the present state of affairs in CM is decisive in resolving questions still debated in literature and in clarifying theoretical and computational issues. As a consequence, the notion of Material Frame Indifference ( MFI) is corrected to the new Constitutive Frame Invariance ( CFI) and reasons are adduced for the rejection of chain decompositions of finite elasto-plastic strains. Geometrically consistent notions of Rate Elasticity ( RE) and Rate Elasto-Visco-Plasticity ( REVP) are formulated and consistent relevant computational methods are designed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号