首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cd0.5Mn0.5Te is a semimagnetic semiconductor, which crystallizes in the zinc-blende structure (ZB) and exhibits a magnetic spin glass like transition at 21 K. Under pressure it shows a first-order phase transition around 2.6 GPa to the NaCl like structure. In this work, the pressure cycled method using a Paris–Edinburgh cell up to 8 GPa has been applied to Cd0.5Mn0.5Te samples in order to obtain recovered nanocrystals. The nanoparticles have been characterized by EDX and electron microscopy. The X-ray and electron diffraction results confirmed the existence of nanocrystals in the ZB phase with an average size of 7 nm. Magnetization measurements made in the range of 2–300 K at low field show that the temperature of the magnetic transition decreases when the crystallites’ size is reduced.  相似文献   

2.
Low Energy Electron Diffraction (LEED) and Density Functional Theory (DFT) have been used to analyse the structure of Cu{100}-p(2 × 6)-2mg-Sn at room temperature. In this work we found that the favoured geometry for this 0.33 ML Cu{100}-Sn phase is a combination of an overlayer structure and a surface alloy; two Sn atoms are alloyed in to the first copper layer and the other two Sn atoms adsorb at off symmetry hollow sites. In order to relieve the stress in the alloyed layer, the alloyed Sn atoms are buckled 0.59/0.45 ± 0.2 Å (DFT/LEED) above the centre of mass of the first layer copper atoms.  相似文献   

3.
The first-principles projector-augmented wave (PAW) potentials within the density function theory (DFT) framework have been used to determine the geometry structures and electronic properties of the zigzag edge AlN nanoribbons (ZAlNNRs) doped with a single Si chain under generalized gradient approximation (GGA). The average Al–Si, Si–Si, Al–N, Si–N, Al–H and N–H bond lengths are 2.39, 2.16, 1.83, 1.74, 1.59 and 1.03 Å, respectively. Pure 7-ZAlNNR is an indirect semiconductor with a large band gap of 2.235 eV, while a semiconductor to metal transformation is taken place after a single Si chain substituting for a single Al–N chain at various positions. In pure 7-ZAlNNR, the HVB and LCB are mainly attributed to the edge N and Al atoms, respectively, while in a single Si chain substituting doped 7-ZAlNNR, the HVB and LCB are mainly attributed to the Si atoms. The Al–N, Al–H and Al–Si bonds are ionic bond, the Si–Si and Si–H bonds are covalent bond, the N–H and N–Si bonds are covalent bond modified ionic bond.  相似文献   

4.
The structural phase transformations of the PtN compound with a 1:1 stoichiometric ratio of Pt:N were investigated using the framework of density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient (PBE-GGA) and the Engel–Vosko generalized gradient (EV-GGA) approximations were used. A comparative study of the experimental and theoretical results is provided on the structural properties of zinc-blende (ZB), rock-salt (RS), cesium chloride (CsCl), wurtzite (WZ), nickel arsenide (NiAs), lead monoxide (PbO), and tungsten carbide (WC) phases. The calculated band structure using the modified version of the Becke and Johnson (mBJ) exchange potential reveals the metallic character of the PtN compound. The present study also shows that the PtN compound crystallizes in the WZ phase under ambient conditions. The theoretical transition pressures from WZ to RS, NiAs, PbO, and CsCl transformations are found to be 9.441 GPa, 7.705 GPa, 18.345 GPa and 31.9 GPa, respectively, using the PBE-GGA method.  相似文献   

5.
The structural and electronic properties of group III rich In0.53Ga0.47As(001) have been studied using scanning tunneling microscopy/spectroscopy (STM/STS). At room temperature (300 K), STM images show that the In0.53Ga0.47As(001)–(4 × 2) reconstruction is comprised of undimerized In/Ga atoms in the top layer. Quantitative comparison of the In0.53Ga0.47As(001)–(4 × 2) and InAs(001)–(4 × 2) shows the reconstructions are almost identical, but In0.53Ga0.47As(001)–(4 × 2) has at least a 4× higher surface defect density even on the best samples. At low temperature (77 K), STM images show that the most probable In0.53Ga0.47As(001) reconstruction is comprised of one In/Ga dimer and two undimerized In/Ga atoms in the top layer in a double (4 × 2) unit cell. Density functional theory (DFT) simulations at elevated temperature are consistent with the experimentally observed 300 K structure being a thermal superposition of three structures. DFT molecular dynamics (MD) show the row dimer formation and breaking is facilitated by the very large motions of tricoodinated row edge As atoms and z motion of In/Ga row atoms induced changes in As–In/Ga–As bond angles at elevated temperature. STS results show there is a surface dipole or the pinning states near the valence band (VB) for 300 K In0.53Ga0.47As(001)–(4 × 2) surface consistent with DFT calculations. DFT calculations of the band-decomposed charge density indicate that the strained unbuckled trough dimers being responsible for the surface pinning.  相似文献   

6.
《Surface science》2003,470(1-2):27-44
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1} at room temperature. RAIRS experiments show that no new species are formed when NO is adsorbed onto a Pt{2 1 1} surface that has been pre-dosed with oxygen and no species are lost from the spectra, compared to spectra recorded for NO adsorption on the clean Pt{2 1 1} surface. However pre-dosed oxygen atoms do influence the frequency and intensity of several of the observed infrared bands. In stark contrast, pre-dosed O has a large effect on the TPD spectra. In particular N2 and N2O desorption, seen following NO adsorption on the clean Pt{2 1 1} surface, is completely inhibited. This effect has been assigned to the blocking of NO dissociation by the pre-adsorbed O atoms. A new NO desorption peak, not seen for NO adsorption on the clean Pt{2 1 1} surface, is also observed in TPD spectra recorded following NO adsorption on an oxygen pre-dosed Pt{2 1 1} surface.  相似文献   

7.
The composition and thermodynamic stability of the (110) surface of Sn1 - xTixO2 rutile solid solutions was investigated as a function of Ti-distribution and content up to the formation of a full TiO2 surface monolayer. The bulk and (110) surface properties of Sn1 - xTixO2 were compared to that of the pure SnO2 and TiO2 crystal. A large supercell of 720 atoms and a localized basis set based on the Gaussian and plane wave scheme allowed the investigation of very low Ti-content and symmetry. For the bulk, optimization of the crystal structure confirmed that up to a Ti-content of 3.3 at.%, the lattice parameters (a, c) of SnO2 do not change. Increasing further the Ti-content decreased both lattice parameters down to those of TiO2. The surface energy of these solid solutions did not change for Ti-substitution in the bulk of up to 20 at.%. In contrast, substitution in the surface layer rapidly decreased the surface energy from 0.99 to 0.74 J/m2 with increasing Ti-content from 0 to 20 at.%. As a result, systems with Ti atoms distributed in the surface (surface enrichment) had always lower energies and thus were thermodynamically more favorable than those with Ti homogeneously distributed in the bulk. This was attributed to the lower energy necessary to break the TiO bonds than SnO bonds in the surface layer. In fact, distributing the Ti atoms homogeneously or segregated in the (110) surface led to the same surface energy indicating that restructuring of the surface bond lengths has minimal impact on thermodynamic stability of these rutile systems. As a result, a first theoretical prediction of the composition of Sn1 - xTixO2 solid solutions is proposed.  相似文献   

8.
We study the pressure-induced phase transition of wurtzite ZnS using a constant pressure ab initio technique. A first-order phase transition into a rocksalt state at 30–35 GPa is observed in the constant pressure simulation. We also investigate the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy–volume calculations and Gibbs free energies at zero temperature and find that both structures show nearly similar equations of state and transform into a rocksalt structure around 14 GPa, in agreement with experiments. Additionally, we examine the influence of pressure on the electronic structure of the wurtzite and zinc-blende ZnS crystals and find that their band gap energies exhibit similar tendency and increase with increasing pressure. The calculated pressure coefficients and deformation potential are found to be comparable with experiments.  相似文献   

9.
Akihiro Ohtake 《Surface science》2012,606(23-24):1886-1891
Adsorption of Al atoms on the As-stabilized InAs(001)—(2 × 4) surface induces the formation of the Al-stabilized (2 × 4) reconstruction. The Al-stabilized (2 × 4) surface has mixed In–As dimer at the outermost layer with the Al atoms being incorporated into the subsurface layers. Heating of the Al-stabilized (2 × 4) surface further promotes the diffusion of Al into deeper layers, which results in the formation of the In-rich (4 × 2) structure with the ζa structure.  相似文献   

10.
The growth mode, structure, thermal stability and work function of Pd films up to several monolayers in thickness on a W{110} surface are studied. At room temperature, layer-by-layer growth occurs, at least up to 4 layers. Layers in excess of the first monolayer are metastable and agglomerate at substrate temperatures above 700 K. Pd-W and Pd-Pd interactions within the first layer are investigated with thermal desorption techniques. The binding energy for single Pd atoms to the substrate is 3.6 eV/atom, the energy per lateral bond between nearest Pd atoms is about 0.05–0.12 eV/bond dependent upon range of interaction. These data are based on a phase transition occurring during the desorption of the first layer. The desorption of Pd in excess of the first monolayer is similar to the sublimation of bulk Pd.  相似文献   

11.
The adsorption of sulphur on clean reconstructed Au{1 1 0}-(1 × 2) surface was studied using density functional theory (DFT) and quantitative low energy electron diffraction (LEED) calculations. The results show that the sulphur atoms form a (4 × 2) ordered structure which preserves the missing row reconstruction of the clean surface. The sulphur atom is found to adsorb on threefold hollow sites, on the {1 1 1} microfacets that border the trenches of the missing rows.  相似文献   

12.
《Applied Surface Science》2005,239(3-4):394-397
Near-field photoluminescence (PL) was measured from ZnO film, composed of nanocrystallites with zinc-blend (ZB) and wurtzite (W) structures, on a sapphire (0 0 0 1) substrate at room temperature (RT). The size of nanocrystallites was in the range of 30–50 nm. Using a fiber probe with aperture size of 80 nm, two near-field emission peaks attributed to one ZB and one W structures were observed. The difference in the emission energies was 0.10 eV close to the calculated bandgap difference between ZB and W structures. The intensity of emission peak from ZB structure with lower energy was stronger than that from W structure, which is supposed to be resulted from the quenched excitonic effect of W structure.  相似文献   

13.
The crystal structure, structural stability, electronic and mechanical properties of ReN and TcN are investigated using first principles calculations. We have considered five different crystal structures: NaCl, zinc blende (ZB), NiAs, tungsten carbide (WC) and wurtzite (WZ). Among these ZB phase is found to be the lowest energy phase for ReN and TcN at normal pressure. Pressure induced structural phase transitions from ZB to WZ phase at 214 GPa in ReN and ZB to NiAs phase at 171 GPa in TcN are predicted. The electronic structure reveals that both ReN and TcN are metallic in nature. The computed elastic constants indicate that both the nitrides are mechanically stable. As ReN in NiAs phase has high bulk and shear moduli and low Poisson's ratio, it is found to be a potential ultra incompressible super hard material.  相似文献   

14.
We have successfully confirmed that In atoms were favored to congregate inside hole structures, during In and As4 irradiations, by a STMBE system which was a scanning tunneling microscope located inside a molecular beam epitaxy growth chamber. After forming 1.5 monolayer of InAs wetting layer (WL) on a GaAs(001) surface, we applied voltage at a particular site on the WL during As4 irradiation at 300 °C, creating hole structures (widths: 33–66.1 nm, depths: 4.9–9.7 nm). With the In and As4 irradiations, spontaneously, In atoms on the WL were congregated inside the holes, decreasing the volume of the hole structures. It was found that InAs growth rates inside the hole structures were 23.1–217 times larger than that at the WL growth region near the holes.  相似文献   

15.
Thin InAs epilayers were grown on GaAs(1 0 0) substrates exactly oriented and misoriented toward [1 1 1]A direction by atmospheric pressure metalorganic vapor phase epitaxy. InAs growth was monitored by in situ spectral reflectivity. Structural quality of InAs layers were studied by using high-resolution X-ray diffraction. No crystallographic tilting of the layers with respect to any kind of these substrates was found for all thicknesses. This result is discussed in terms of In-rich growth environment. InAs layers grown on 2° misoriented substrate provide an improved crystalline quality. Surface roughness of InAs layers depend on layer thickness and substrate misorientation.  相似文献   

16.
张伟  程艳  朱俊  陈向荣 《中国物理 B》2009,18(3):1207-1213
Structural, thermodynamic and electronic properties of zinc-blende AlN under pressure are investigated by first-principles calculations based on the plane-wave basis set. Through the analysis of enthalpy variation of AlN in the zinc-blende (ZB) and the rock-salt (RS) structures with pressure, we find the phase transition of AlN from ZB to RS structure occurs at 6.7 GPa. By using the quasi-harmonic Debye model, we obtain the heat capacity CV, Debye temperature ΘD, Grüneisen parameter γ and thermal expansion coefficient α. The electronic properties including fundamental energy gaps and hydrostatic deformation potentials are investigated and the dependence of energy gaps on pressure is analysed.  相似文献   

17.
The stabilization mechanism of the polar, copper terminated Cu2O(001) surface by means of complex surface reconstruction was studied theoretically with a combination of static and molecular dynamics calculations. The experimentally reported “3√2 × 1” surface structure was constructed and characterized for the first time. The combination of simulated annealing with molecular dynamics shows that Cu+–Cu+ dimers are formed in the first layer along the equivalent [011] and [01?1] directions at elevated temperature. There is a relaxation of the atoms that separates copper cations from nearest neighbor rows. Using the experimentally observed superstructure cell allows decoupling the symmetry equivalent dimers. The structural reconstructions were characterized by the electronic properties calculations. It is observed that the dimers are formed due to the d–d interaction of the copper atoms. Finally, the symmetry driven reconstructed structure was investigated by DFT STM. The simulated STM images show that copper atoms have higher density than oxygen atoms at the surface and produce the positive surface corrugation.  相似文献   

18.
This work presents the use of high resolution electron microscopy (HREM) and geometric phase analysis (GPA) to measure the interplanar spacing and strain distribution of three gold nanomaterials, respectively. The results showed that the {1 1 1} strain was smaller than the {0 0 2} strain for any kind of gold materials at the condition of same measuring method. The 0.65% of {1 1 1} strain in gold film measured by HREM (0.26% measured by GPA) was smaller than the {1 1 1} strains in two gold particles. The presence of lattice strain was interpreted according to the growth mechanism of metallic thin film. It is deduced that the {1 1 1} interplanar spacing of the gold thin film is suitable for high magnification calibration of transmission electron microscopy (TEM) and the gold film is potential to be a new calibration standard of TEM.  相似文献   

19.
An InGaAs–based photodetector with different periods of inserting strain–compensated In0.66Ga0.34As/InAs superlattice (SL) electron barrier in the In0.83Ga0.17As absorption layer has been investigated. The band diagram, electron concentration and electric field intensity of the structure were analyzed with numerical simulation. It was found that the period of SL has a remarkable influence on the properties of the photodetectors. With the decrease of the period of In0.66Ga0.34As/InAs SL, the dark current density is suppressed significantly, which is reduced to 2.46 × 10−3 A/cm2 at 300 K and a reverse bias voltage of 1 V when the period is 2.5 nm.  相似文献   

20.
C. Fan  G.P. Lopinski 《Surface science》2010,604(11-12):996-1001
The gas phase anhydrous reaction of glycidoxypropyldimethylethoxysilane (GPDMES) with a model hydroxylated surface has been investigated using high-resolution electron energy loss spectroscopy (HREELS) and scanning tunneling microscopy (STM). Water dissociation on the clean reconstructed (2 × 1)-Si(100) surface was used to create an atomically flat surface with ~ 0.5 ML of hydroxyl groups. Exposure of this surface to GPDMES at room temperature under vacuum was found to lead to formation of covalent Si–O–Si bonds although high exposures (6 × 108 L) were required for saturation. STM images at the early stages of reaction indicate that the reaction occurs randomly on the surface with no apparent clustering. The STM images together with semi-empirical (AM1) calculations provide evidence for hydrogen bonding interactions between the oxygen atoms in the molecule and surface hydroxyl groups at low coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号