首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A rhodamine‐based colorimetric and fluorescent pH chemosensor ( RhA ) was designed and synthesized via a coupling reaction between rhodamine ethylenediamine and succinic anhydride. RhA showed excellent pH response in aqueous solutions. In addition, common cations (Na+, K+, Ag+, Mg2+, Ca2+, Pb2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Al3+, Cr3+, Fe3+, Au3+, Pt2+, and Ru2+) did not interfere with the pH response. As it has the potential to be used as a portable pH sensor, RhA was immobilized on activated cellulose paper using N,N'‐dicyclohexylcarbodiimide (DCC) and N,N'‐dimethylpyridin‐4‐amine (DMAP) as the coupling reagent to obtain a composite pH sensor ( CP‐RhA ). CP‐RhA was characterized by ATR‐FTIR, UV–vis, and fluorescence spectroscopy, and by scanning electron microscopy (SEM). CP‐RhA showed a rapid response in the pH range 1–8 through color and fluorescence changes. DFT calculations showed a blue‐shifted spectrum in the protonated form compared to the neutral form. Moreover, the pH sensor paper could be reused by dipping in NaOH. Thus, our work demonstrates the potential of the rhodamine dye composite for visualizing pH changes in real systems.  相似文献   

2.
A novel capillary with high sensitivity and selectivity for mercury ion detection based on modified nanosize silica has been designed and synthesized. The obtained modified capillary was applied to separate and determine mercury ion by capillary electrophoresis with a laser‐induced fluorescence detector. The optimal experimental conditions were determined by evaluating various controlling factors: running buffer hexamine‐HCl 15 mmol L?1, pH=5.2, separation voltage 30 kV and temperature 25 °C. The modified capillary exhibited excellent sensitivity and selectivity for Hg2+ over other coexisting metal ions (K+, Ag+, Ca2+, Mg2+, Ba2+, Ni2+, Cd2+, Pb2+ and Zn2+ increased to 10000 times of Hg2+, Cu2+ increased to 5000 times) in aqueous solution, and was successfully applied to the determination of Hg2+ in natural water samples and displayed satisfactory results.  相似文献   

3.
Hui Xu  Xiwen Zeng  Huiling Dai 《中国化学》2011,29(10):2165-2168
A new fluorescent chemosensor based upon 1,8‐naphthalimide and 8‐hydroxyquinoline was synthesized, and its fluorescent properties in the presence of different metal cations (Hg2+, Ag+, Zn2+, Fe2+, Cd2+, Pb2+, Ca2+, Cu2+, Mg2+, and Ba2+) were investigated. It displayed fluorescence quenching with some heavy and transition metal (HTM) ions, and the quenching strongly depended on the nature of HTM ions.  相似文献   

4.
This study concentrates on the spectral and complexing properties of a tetraoxycalix[2]arene[2]triazine derivative bearing two bipyridines (Calix‐BIPY2) in a mixture of acetonitrile:chloroform (4:1, V:V). The results show that Calix‐BIPY2 has a highly selectivity and sensitivity towards Zn2+ over various competing cations (K+, Cu2+, Cd2+, Co2+, Fe2+, Hg2+, Ag+, Al3+ and Pb2+). The complexation of Zn2+ induces a remarkable fluorescence enhancement due to combination effects of the binding strength, electron spins state of metal ions, photoinduced charge transfer (PCT) and the rigidity of the complexing unit offered by calixarene‐based hosts.  相似文献   

5.
New water‐soluble hyperbranched polyfluorenes bearing carboxylate side chains have been synthesized by the simple “A2 + B2 + C3” protocol based on Suzuki coupling polymerization. The linear polyfluorene analogue LPFA was also synthesized for comparative investigation. The optical properties of the neutral precursory polymers in CHCl3 and final carboxylic‐anionic conjugated polyelectrolytes in buffer solution were investigated. The obtained hyperbranched polyelectrolyte HPFA2 with lower content of branch unit (2%) showed excellent solubility and high fluorescence quantum yield (?F = 89%) in aqueous solution. Fluorescence quenching of HPFA2 by different metal ions was also investigated, the polyelectrolyte showed high selectivity for Hg2+ and Cu2+ ions relative to other various metal ions in buffer solution. The Stern‐Volmer constant Ksv was determined to be 0.80 × 106 M?1 for Hg2+ and 3.11 × 106 M?1 for Cu2+, respectively, indicating the potential application of HPFA2 as a highly selective and sensitive chemosensor for Hg2+ and Cu2+ ions in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3431–3439, 2010  相似文献   

6.
Guha S  Lohar S  Hauli I  Mukhopadhyay SK  Das D 《Talanta》2011,85(3):1658-1664
An efficient Hg2+ selective fluorescent probe (vanillin azo coumarin, VAC) was synthesized by blending vanillin with coumarin. VAC and its Hg2+ complex were well characterized by different spectroscopic techniques like 1H NMR, QTOF-MS ES+, FTIR and elemental analysis as well. VAC could detect up to 1.25 μM Hg2+ in aqueous methanol solution through fluorescence enhancement. The method was linear up to 16 μM of Hg2+. Negative interferences from Cu2+, Ni2+, Fe3+, and Zn2+ were eliminated using EDTA as a masking agent. VAC showed a strong binding to Hg2+ ion as evident from its binding constant value (2.2 × 105), estimated using Benesi-Hildebrand equation. Mercuration assisted restricted rotation of the vanillin moiety and inhibited photoinduced electron transfer from the O, N-donor sites to the coumarin unit are responsible for the enhancement of fluorescence upon mercuration of VAC. VAC was used for imaging the accumulation of Hg2+ ions in Candida albicans cells.  相似文献   

7.
A novel coumarin derivative CTT was synthesized via the condensation of 7-(N,N-diethylamino) coumarin-3-aldehyde with 5-amino-1,3,4-thiadiazole-2-thiol and its structure was characterized using infrared spectroscopy (IR), 1H NMR, mass spectrometry (MS) techniques, and elemental analysis. The recognition properties of CTT with metal ions were investigated in CH3CN–H2O (v/v = 1/1) solution using UV–vis absorption and fluorescence emission spectrum method. The results showed that CTT could monitor Cu2+ and Hg2+ simultaneously as a dual-function chemosensor in CH3CN–H2O (v/v = 1/1). CTT could be used to detect Cu2+ colorimetrically; when using CTT, a color change from yellowish-brown to yellowish-green could be readily observed by the naked eye. CTT showed turn-on fluorescent recognition of Hg2+, the fluorescence enhancement was attributed to the inhibited C=N isomerization and the obstructed excited state intramolecular proton transfer (ESIPT) of CTT. The recognition mechanism of CTT for Cu2+ and Hg2+ was studied by experiments and theoretical calculations, respectively. Therefore, CTT has the ability to be a “single chemosensor for dual targets.”  相似文献   

8.
李广科a  b  刘敏a  b  杨国强a  陈传峰  a  黄志镗  a 《中国化学》2008,26(8):1440-1446
我们方便地合成了上沿修饰四丹磺酰胺基团的杯[4]芳烃衍生物1,发现该化合物在含50%水的乙腈中显示出对汞离子高选择性和灵敏性的识别作用,竞争实验表明多数金属离子对其检测干扰较小。机理研究结果表明荧光萃灭源于由丹磺酰胺基团到汞离子的光致电子转移过程。另外,通过研究1和1-Hg2+的荧光衰减实验,以及对比双丹磺酰胺杯[4]芳烃2和单丹磺酰胺杯[4]芳烃3对汞离子的识别作用,发现化合物1的四丹磺酰胺基团具有很好的预组织和协同作用。化合物1对汞离子的检测限为3.41×10-6 mol·L-1,这可以使1成为一个潜在的汞离子荧光化学传感器。  相似文献   

9.
A simple and green analytical procedure based on chlorophyll a is presented for the determination of Hg2+ ion. Chlorophyll a was extracted and purified from the leaves of pea and is employed as a reagent for analysis of Hg2+ ion. It displays remarkable fluorescence emission at 674 nm when excited at 412 nm. The emission intensity decreased significantly on exposure to various concentrations of Hg2+ ion. This forms the basis for the determination of Hg2+ ion. The proposed method was evaluated for sensitivity and selectivity. The linear concentration range was found to be 2.0–10 μM with r2 = 0.997 and the limit of detection for Hg2+ ion was 1.3 μM. Ions including Pb2+, Cd2+, Ag+, Zn2+, Co2+, Ni2+, Cu2+, Mg2+, Mn2+, Ru3+, Er3+, K+, Na+, NH4+, Cl, NO3, CH3COO and SO42− did not interfere with the measurement of Hg2+ ion even at 500-fold excess. Since chlorophyll a is widely available in the leaves of most plants, and the extraction and purification process is simple, this technique can provide an alternative, sensitive and economical way to determine Hg2+ ion.  相似文献   

10.
A new thiacalix[4]arene derivative in a 1,3-alternate conformation bearing four naphthalene groups through crown-3 chains has been synthesized, which exhibits high selectivity toward Hg2+ by forming a 1:2 complex, among other metal ions ( Na+, K+, Mg2+, Ba2+, Ca2+, Sr2+, Cs+, Mn2+, Fe2+, Cd2+, Co2+, Ni2+, Cu2+, Li+, and Zn2+) with a low detection limit (3.30×10?7 M). The metal ion-binding properties were studied by fluorescence, AFM, and 1H NMR spectroscopy. The in situ prepared [Hg2++L] complex shows well recognition ability for cysteine with a low detection limit (2.23×10?7 M) through fluorescence turning on. The mechanism of fluorescence turning on is the host L releasing from [L+Hg2+] for [Cys+Hg2+] complex formed. Thus the paper reports secondary-sensor design: Hg2+ as a first sensor for [L+Hg2+] form, cysteine as a second sensor for Hg2+ releasing from the [L+Hg2+] complex after cysteine adding in.  相似文献   

11.
A new 1,8-naphthalimide derivative bearing an aza-15-crown-5 macrocycle (1) has been synthesized as a chemosensor for Hg2+ by a two-step reaction. The sensor shows selectivity to Hg2+ over 11 other metal cations in aqueous media. Upon addition of Hg2+, the fluorescence emission of the sensor at 537 nm is significantly quenched along with 22 nm blue-shift that makes this compound a useful sensor for Hg2+ measurement.  相似文献   

12.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize Hg2+ in aqueous solution. The fluorescence enhancement of 1 is attributed to the formation of a complex between 1 and Hg2+ by 1:1 complex ratio (K = 2.08 × 105), which has been utilized as the basis of fabrication of the Hg2+-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Hg2+ indicated that the method can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Hg2+-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Hg2+ with a linear range covering from 2.57 × 10−7 to 9.27 × 10−5 M and a detection limit of 4.93 × 10−8 M. The experiment results show that the response behavior of 1 toward Hg2+ is pH independent in medium condition (pH 4.0–8.0). Most importantly, the fluorescence changes of the chemosensor are remarkably specific for Hg2+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the response of the chemosensor toward Hg2+ is fast (response time less than 1 min). In addition, the chemosensor has been used for determination of Hg2+ in hair samples with satisfactory results, which further demonstrates its value of practical applications.  相似文献   

13.
An efficient fluorescent chemosensor for Hg2+ ion, based on 5-(dimethylamino)-N-(2-mercaptophenyl)naphthalene-1-sulfonamide, has been developed. It exhibits Hg2+-selective on–off fluorescence quenching behavior via twisted intramolecular charge transfer (TICT) mechanism, which is rationalized by time dependent density functional theory (TD-DFT) calculations. The system exhibits visible color change from colorless to gray upon Hg2+ binding with very high selectivity and sensitivity (as low as 5.0 × 10−10 mol L−1) over other metal ions such as K+, Na+, Ag+, Mn2+, Ca2+, Ba2+, Fe2+, Zn2+, Pb2+, Cu2+, Sn2+, Cd2+, Ni2+ and Co2+. The present sensing system is also successfully applied for the detection of Hg2+ ion in real samples.  相似文献   

14.
New crown ether‐functionalized benzimidazoles was designed and synthesized via formylation of dibenzo‐18‐crown‐6 followed by condensation with different o‐phenylene diamines. The complexation properties of crown ether‐functionalized benzimidazoles with various metals (K+, Ca2+, Ba2+, Co2+, Hg2+) were examined using UV–vis spectroscopy. Hg2+ showed a well‐defined peculiar absorption maximum at 366 nm exclusively. All these newly synthesized compounds were screened for antifungal activity against Aspergillus niger and Aspergillus oryzae, respectively.  相似文献   

15.
A new rhodamine-based Hg2+-selective fluorescent probe (I) was designed and synthesized. Compound I displays excellent selective and sensitive response to Hg2+ over other transition metal ions in neutral aqueous solutions. I itself is a colorless, nonfluorescent compound. Upon addition of Hg2+ to its solution, the thiosemicarbazide moiety of I undergoes an irreversible desulfurization reaction to form the corresponding 1,3,4-oxadiazole (II), a colorful and fluorescent product, causing instantaneous development of visible color and strong fluorescence emission. Based on this mechanism, a fluorogenic probe for Hg2+ was developed. The fluorescence increases linearly with the Hg2+ concentration up to 0.8 μmol L−1 with the detection limit of 9.4 nmol L (3σ).  相似文献   

16.
Fe(0) was firstly used as single‐electron transfer‐living radical polymerization catalyst for acrylonitrile polymerization using carbon tetrachloride as initiator, hexamethylenetetramine as N‐ligand, and N,N‐dimethylformamide as the solvent at 65 °C. First‐order kinetic studies indicated that this polymerization proceeded in a “living”/controlled manner. The living nature of the polymerization was also confirmed by chain extension of methyl methacrylate with polyacrylonitrile (PAN) as macroinitiator. Furthermore, PAN was modified with NH2OH·HCl to generate amidoxime groups for extraction of heavy metal ions (Hg2+) from aqueous solutions. Fourier transformed infrared spectroscopy was performed to characterize chemical composition and structure. The adsorption property of Hg2+ was investigated at different pH values of aqueous solutions and distilled water. The maximal saturated adsorption capacity of Hg2+ was 4.8 mmol g?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A new fluorogenic calix[4]arene containing one pendent N-dansylcarboxamide group has been synthesized. The ligand demonstrates selective optical recognition of Tl+ and Hg2+ in solvent extraction from aqueous solutions with high content of Na+. Complexation of Tl+ and Hg2+ produces contrasting changes in the fluorescence spectrum of this sensor. Partial cone is the dominant calixarene conformation in the complex with Tl+.  相似文献   

18.
Chen HQ  Fu J  Wang L  Ling B  Qian BB  Chen JG  Zhou CL 《Talanta》2010,83(1):139-144
With the biomolecule glutathione (GSH) as a capping ligand, Eu3+-doped cadmium sulfide composite nanoparticles were successfully synthesized through a straightforward one-pot process. An efficient fluorescence energy transfer system with CdS nanoparticles as energy donor and Eu3+ ions as energy accepter was developed. As a result of specific interaction, the fluorescence intensity of Eu3+-doped CdS nanoparticles is obviously reduced in the presence of Hg2+. Moreover, the long fluorescent lifetime and large Stoke's shift of europium complex permit sensitive fluorescence detection. Under the optimal conditions, the fluorescence intensity of Eu3+ at 614 nm decreased linearly with the concentration of Hg2+ ranging from 10 nmol L−1 to 1500 nmol L−1, the limit of detection for Hg2+ was 0.25 nmol L−1. In addition to high stability and reproducibility, the composite nanoparticles show a unique selectivity towards Hg2+ ion with respect to common coexisting cations. Moreover, the developed method was applied to the detection of trace Hg2+ in aqueous solutions. The probable mechanism of reaction between Eu3+-doped CdS composite nanoparticles and Hg2+ was also discussed.  相似文献   

19.
Heavy metal ions such as Hg and Pb are hazardous due to very high toxicity, mobility, and ability to accumulate through the food chain or atmosphere in the environment system. Therefore, ultrasensitive determination of mercury and lead is important to provide an evaluation index of ions in aqueous environment. This paper describes the investigation of surface modified quantum dots (QDs) as a sensing receptor for Hg2+ and Pb2+ ion detection by optical approach. Water-soluble L-cysteine-capped CdS QDs have been synthesized in aqueous medium. These functionalized nanoparticles were used as a fluorescence sensor for Hg2+ and Pb2+ ions, involved in the fluorescence quenching. The effect of foreign ions on the intensity of CdS QDs showed a low interference response toward other metal ions except Cu2+ and Fe2+ ions. The limit of detection (LOD) of this system is found to be 1.0 and 3.0 nM for Hg2+ and Pb2+ ions, respectively.  相似文献   

20.
An optical chemical sensor based on 2-mercaptopyrimidine (2-MP) in plasticized poly(vinyl chloride) (PVC) membrane incorporating (N,N-diethyl-5-(octadecanoylimino)-5H benzo[a]phenoxazine-9-amine (ETH 5294) and sodium tetraphenyl borate (NaTPB) for batch and flow-through determination of mercury ion is described. The response of the sensor is based on selective complexation of Hg2+ with 2-MP in the membrane phase, resulting in an ion exchange process between H+ in the membrane and Hg2+ in the sample solution. The influences of several experimental parameters, such as membrane composition, pH, and type and concentration of the regenerating reagent, were investigated. The sensor has a response range of 2.0 × 10−9 to 2.0 × 10−5 mol L−1 Hg2+ with a detection limit of 4.0 × 10−10 mol L−1 and a response time of ≤45 s at optimum pH of 6.5 with high measurement repeatability and sensor-to-sensor reproducibility. It shows high selectivity for Hg2+ over several transition metal ions, including Ag+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+, and common alkali and alkaline earth ions such as Na+, K+, Mg2+, Ca2+, and Pb2+. The sensor membrane can be easily regenerated with dilute acid solutions. The sensor has been used for the determination of mercury ion concentration in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号