首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorinated copolymers are well known for their large range of applications. These applications can be improved by grafting or crosslinking of several agents. The mechanism of crosslinking of hexamethylene diamine and 2,4,4-trimethyl-1,6-hexanediamine is well known and occurs in four different steps. To elaborate a film of commercially available poly(VDF-co-HFP) copolymer crosslinked by 2,4,4-trimethyl-1,6-hexanediamine, a step of press cure under air is necessary. Temperature, time and pressure were optimised by regarding the solubility of the press cured films, the mechanical properties, the swelling rate in methyl ethyl ketone, and the degradation of the films. The best temperature, time and pressure for press cure were 150 °C, from 15 to 30 min, and 20 bars, respectively. Other properties of crosslinked poly(VDF-co-HFP) copolymers containing 10 mol.% and 20 mol.% of HFP were characterized. First, all films were insoluble in concentrated HCl. Secondly, swelling rates of different amounts of diamine crosslinked copolymers were measured in ethylene carbonate/dimethyl carbonate and in methyl ethyl ketone; it was proved that the higher the molar percentage of diamine, the higher the crosslinking density, so the lower the swelling rate. Concerning thermal properties, glass transition temperature mainly increased when the amount of diamine increased. Thermal stability measurements showed a higher decomposition temperature when the percentage of diamine was very low (5 mol.%). Finally, mechanical properties were measured by dynamic mechanical analysis; the storage tensile modulus (E′) of a diamine crosslinked Kynar® copolymer versus temperature exhibited a high drop because Kynar® was a highly amorphous copolymer. Moreover, the higher the amount of diamine, the higher the rubbery modulus.  相似文献   

2.
Biodegradable polyurethane elastomers with potential for applications in medical implants with tunable degradation rate and physical properties were synthesized from reaction of epoxy terminated polyurethanes (EUP) with 1,6-hexamethylene diamine (HMDA) as curing agent. Poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG) as well as 1,6-hexamethylene diisocyanate (HDI) were used for preparation of isocyanate terminated polyurethanes which were subsequently blocked with glycidol to prepare EUPs. All materials were characterized by conventional methods, and their properties were studied fully. Results showed that elastomers based on PEG exhibit superior degradation rate and inferior mechanical properties in comparison to elastomers based on PCL. Optimum degradation rate and mechanical properties were obtained from elastomers made from mixture of PCL and PEG base EUPs.  相似文献   

3.
A new bis(phenoxy)naphthalene-containing diamine, 1,6-bis(4-aminophenoxy)naphthalene, was synthesized in two steps from the condensation of 1,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 1,6-bis(4-nitrophenoxv)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of polyamides were synthesized by the direct polycondensation of the diamine with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiBr using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yield with inherent viscosities of 0.78–3.72 dL/g. Most of the polymers were soluble in aprotic solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), NMP, and they could be solution-cast into transparent, flexible and tough films. The casting films had tensile strength of 102–175 MPa, elongation at break of 8–42%, and tensile modulus of 2.4–3.8 GPa. The polymers derived from rigid dicarboxylic acids such as terephthalic acid and 4,4′-biphenyldicarboxylic acid exhibited some crystalline characteristics. The glass transition temperatures of the polyamides were in the range of 238–337°C, and their 10% weight loss temperatures were above 487°C in nitrogen and above 438°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Polyurethane networks based on castor oil (CO) as a renewable resource polyol and poly(ethylene glycol) (PEG) with tunable biodegradation rates as potential candidates for biomedical implants and tissue engineering were synthesized through the reaction of epoxy-terminated polyurethane prepolymers (EPUs) with 1,6-hexamethylene diamine curing agent. EPUs themselves were prepared from reaction of glycidol and isocyanate terminated polyurethane prepolymers made from CO or PEG and 1,6-hexamethylene diisocyanate. All of the polymers were characterized by conventional methods, and their physical, mechanical and viscoelastic properties were studied. The results showed that the degradation rate and mechanical properties of final products could be controlled by the ratio of PEG or CO based EPUs in the final products. Increasing the PEG based EPU content caused an increase in hydrolytic degradation rate and mechanical properties. Evaluation of the L-929 fibroblast cells' interaction with prepared polymeric films showed nontoxic behavior and good cytocompatibility.  相似文献   

5.
Phenol‐based acyclic ligand 1,6‐bis(2‐chlorobenzyl)‐2,5‐bis(2‐hydroxy‐3‐formyl‐5‐methylbenzyl)‐2,5‐diazahexane, LH2 and its dilithium form Li2L possessing two dissimilar compartments having multifunctional groups were prepared through a Mannich reaction. To synthesize this ligand first, diamine compound 1,6‐bis(2‐chlorobenzyl)‐2,5‐diazahexane was prepared and then in a one‐step procedure an equivalent of diamine and two equivalents of 4‐methyl‐2‐formylphenol in the presence of an excess amount para‐formaldehyde were reacted. All characterization data for the new compounds including diimine, diamine, LH2 and Li2L are reported.  相似文献   

6.
Herein, new poly(ortho ester disulfide urethanes) (POEDU) and poly(ortho ester urethanes) (POEU) were successfully synthesized via polycondensation between active esters of 1,6-hexandiol (HD) and dual-stimuli-sensitive ortho ester disulfide diamine or pH-senstive ortho ester diamine. The corresponding POEDU and POEU nanospheres were easily fabricated using an oil-in-water emulsion technique. In vitro degradation experiments indicated that POEDU nanospheres degraded faster than POEU nanospheres in mildly acidic and reductive environments. Doxorubicin (DOX) as a model antitumor drug was successfully incorporated into these nanospheres to give DOX-loaded nanoparticles (POEDU-DOX and POEU-DOX). In vitro drug release studies showed that release of DOX from dual-stimuli-sensitive POEDU-DOX was accelerated compared with release from the pH-sensitive POEU-DOX under DL-dithiothreitol (DTT) and mildly acidic conditions. In addition, in vitro uptake and cytotoxicity assays revealed that POEDU-DOX exhibited more efficient antitumor effect than POEU-DOX did against both two-dimensional (2D) cells and three-dimensional (3D) multicellular tumor spheroids (MCTS). Finally, in a mice H22 tumor model, POEDU-DOX exhibited preferable antitumor capability. In conclusion, the pH and redox dual-stimuli-sensitive POEDU nanospheres can be superior drug carriers for cancer treatment.  相似文献   

7.
Two high porous thioindates with 1,6‐diaminohexane (DAH), DAH‐InS‐ 1 and DAH‐InS‐ 2 , were prepared by solvothermal reaction. Though the same T3 supertetrahedral frameworks were reported, the cations are different. DAH is a non‐cyclic diamine and also an economical reagent for synthesis. Because of the structural difference of the structural directing agents, the dimensions of crystal cells of DAH‐InS‐ 1 and DAH‐InS‐ 2 are elongated and the total volumes for the cation and solvent are 74.6 and 72.1 % (Platon) larger relative to those reported previously. The two compounds were obtained in one reaction system by controlling the reaction time. Their structures are briefly discussed and the correlativity of crystal shape with the parameters of microstructure is discussed.  相似文献   

8.
Poly(epsilon-caprolactone) (PCL) macromers (M(n) = 1.7-3.8 kDa) which contain one Z-protected -NH2 group per chain were synthesized by ring-opening polymerization of epsilon-caprolactone in the presence of Sn(oct)2 using as initiator a diamine prepared by condensation of N-Boc-1,6-hexanediamine and N(alpha)-Boc-N(epsilon)-Z-L-Lysine. The coupling of these macromers with -COCl end-capped poly(oxyethylene) (PEO), M(n) = 1.0 kDa, afforded amphiphilic multiblock poly(ether ester)s (PEEs) which have, along the chain, regularly spaced pendant protected amino groups. Deprotection, accomplished without chain degradation, yielded -NH2 groups available for further reactions. The molecular structure of macromers and PEEs was investigated by 1H NMR and SEC. DSC and WAXS analyses showed that macromers and copolymers were semicrystalline and their T(m) increased with increase in the molecular weight of PCL segments. The inherent viscosity values (0.25-0.30 dL x g(-1)), together with SEC analysis results, indicated moderate polymerization degrees.  相似文献   

9.
The reactivities of tricarbonyl(2,4-cycloheptadiene-1,6-dione)iron toward several kinds of nucleophiles and electrophiles were investigated. As a result, it was found that tricarbonyl(2,4-cycloheptadiene-1,6-dione)iron has several reaction sites and undergoes several types of reactions. A new synthetic route to hinokitiol and tricarbonyl-(7,8-diphenylheptariafulvalene-1,6-quinone)iron from (2,4-cycloheptadiene-1,6-dione)iron was explored.  相似文献   

10.
PET is a semicrystalline thermoplastic polyester used in many fields. For a variety of applications, however, it is necessary to impart desired properties by introducing specific functional groups on the surface. Aminolysis of PET fibers with diamines (1,2-diaminoethane, 1,6-diaminohexane, 3,6-dioxa-1,8-diaminooctane, and 4,9-dioxa-1,12-diaminododecane) gives amino functional groups on the surface. The effects of temperature, reaction time, diamine concentration, and solvent employed for the grafting were studied. The graft yield was observed to increase with temperature, reaction time, and diamine concentration. Aminolysis affects greatly the geometry and surface morphology of PET fibers as observed by scanning electronic microscopy and atomic force microscopy in tapping mode. A decrease of fibers diameter and an increase of surface heterogeneity and roughness due to chemical degradation is observed. Amino groups on the surface were used to prepare glycosylated fibers by reductive amination or amidation with different carbohydrates as maltose, maltotriose, and maltohexaose. The study reveals that the yield is dependent on the initial amino groups' surface concentration and the molar mass of the carbohydrate. These surfaces could benefit to a wide range of applications in the biomedical field. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2172–2183, 2007  相似文献   

11.
A study was made of the preparation of aromatic polymeric amines in order to test their thermal stability. The most useful method was the hydrogenation of polymeric Schiff bases by the dimethylamine—borane reagent or the borane—tetrahydrofuran reagent. The Schiff bases were prepared by the solution polymerization of terephthalaldehyde with various aromatic diamines, including 4,4′-methylenedianiline, benzidine, and p-phenylenediamine, and for comparison, 1,6-hexanediamine. The Schiff bases and the polyamines from the aromatic diamines were found to be dimers or trimers, not high polymers: the polymers from the aliphatic diamine had a degree of polymerization of about 14. Thermogravimetric analyses of the aromatic polyamines under nitrogen showed that the initial temperatures of marked degradation were 350–400°C.  相似文献   

12.
The esterification of the carboxyl group in copoly(γ-benzyl-L -glutamyl-L -glutamic acid) was carried out using N-hydroxysuccinimide and dicyclohexylcarbodimide to yield the activated site for the coupling reaction with amino compounds. The α-helix stability of the reactive copolymer thus obtained is remarkably affected in the presence of succinimide ring. This copolymer was proved to react nearly completely with amino alcohols such as 2-aminoethanol, 3-aminopropanol, and diethanolamine. The copoly(N5-hydroxyalkyl-L -glutamine) thus prepared is insoluble in water, since the benzyl ester remains in this copolymer. The copoly(α-amino acids) having another functional group were also prepared using aminoalkylsilane. Crosslinked poly(α-amino acids) were prepared by the reaction of the reactive copolymer with a low-molecular-weight polymer of PBLG having one amino group on each end of its main chain which was obtained from the corresponding NCA using p-diaminobenzene as an initiator. Another crosslinked polymer was prepared using an alkyl diamine such as 1,6-diaminohexane or 1,12-diaminododecane as a crosslinking reagent. The crosslinked copoly(α-amino acids) bearing the activated site are able to further react with various compounds having amino groups.  相似文献   

13.
在水溶液中, 将N,N′-二(邻氧乙酸)苄叉乙二胺(1)与氯化钴(Ⅱ)反应, 获得配合物Co(Ⅱ)L1·H2O(2)[L1=N,N′-二(邻氧乙酸)苄叉乙二胺]; 将邻氧乙酸苯甲醛、 乙二胺与氯化铜(Ⅱ)反应, 获得Cu(Ⅱ)ClL2·2H2O(3)[L2=N-(邻氧乙酸)苄叉乙二胺]. 用元素分析、 1 H NMR和IR等方法对所合成的化合物1和配合物2和3进行了结构表征, 并测定了配合物2和3的晶体结构. 黄豆种子经不同浓度配合物2和3处理均能萌发, 但发芽率、 发芽指数和活力指数均比对照组低, 说明配合物2和3随着溶液浓度的增加对黄豆种子萌发和幼苗生长产生一定的阻滞作用.  相似文献   

14.
For the first time several T(h)-symmetrical hexakisadducts of C(60) bearing up to six electro- and photoactive o-phenylene diamine or 9,10-dialkoxyanthracene moieties were synthesized and subjected to photoinduced electron/energy-transfer studies. Both donors form a densely packed pi-donor shell surrounding the fullerene core. In these novel core-shell ensembles (7 and 19), either an efficient energy transfer from the dialkoxyanthracene periphery, or an electron transfer from the o-phenylene diamine periphery transduces the flow of excited-state energy or electrons, respectively, to the fullerene moiety, which resides in the central core. Due to the relatively high reduction potential of the fullerene core, which is anodically shifted by approximately equal to 0.7 V, compared with that of pristine C(60), the outcome of these intramolecular reactions depends mainly on the donor ability of the peripheral system. Interestingly, the charge-separated state in the o-phenylene diamine heptad (7; tau=2380 ns in benzonitrile) is stabilized by a factor of 20 relative to the corresponding o-phenylene diamine dyad (6; tau=120 ns in benzonitrile), an effect that points unequivocally to the optimized storage of charges in this highly functionalized fullerene ensemble.  相似文献   

15.
(1,4,7,10-Tetraazacyclododecane) [diamine or (S)-alanine]-cobalt(III) complexes [diamine = ethylenediamine, 2-(aminomethyl)pyridine, (R)-1,2-propanediamine, (R,R)-1,2-diaminocyclohexane, trimethylenediamine and 2-methyl-1,3-diaminopropane] are prepared and characterized spectroscopically. The ligand field transitions occur at lower energies than those of the corresponding tetraamine analogues. Severe distortions caused by the too small size of the cyclic ligand are one of the origins. The distortions also exert influence upon circular dichroism spectra.  相似文献   

16.
1,6-Bis(4-aminophenoxy)naphthalene ( I ) was used as a monomer with various aromatic tetracarboxylic dianhydrides to synthesize polyimides via a conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by thermal cyclodehydration to polyimides. The diamine ( I ) was prepared through the nucleophilic displacement of 1,6-dihydroxynaphthal-ene with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.73–2.31 dL/g. All the poly(amic acid)s could be solution cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimide films had a tensile modulus range of 1.53–1.84 GPa, a tensile strength range of 95–126 MPa, and an elongation range at break of 9–16%. The polyimide derived from 4,4′-sulfonyldiphthalic anhydride (SDPA) had a better solubility than the other polyimides. These polyimides had glass transition temperatures between 248–286°C (DSC). Thermogravimetric analyses established that these polymers were fairly stable up to 500°C, and the 10% weight loss temperatures were recorded in the range of 549–595°C in nitrogen and 539–590°C in air atmosphere. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The enthalpy changes for the reaction of [Co(AA)3]X3 and [Co(dien)2]X3 type complexes with an alkaline sodium sulfide solution were calorimetrically measured at 25°C, where AA is the diamine such as en, pn, tn, bpy or phen and X is Cl, Br, NO3, I or ClO4. The thermal stabilities were found to decrease in the following orders: chloride > bromide > nitrate > iodide > perchlorate; aliphatic diamine > aromatic diamine complexes; five-membered chelate > six-membered chelate compounds; and tris(diamine) > bis(triamine) complexes.  相似文献   

18.
Russian Chemical Bulletin - The solution state of a new antituberculosis drug 1,6-bis(hydrazidomethylsulflnyl)hexane (L) and its complexation with copper(II) were investigated by spectrophotometry,...  相似文献   

19.
Summary Mixed difluoro(diamine)(diamme)chromium(III) complexes have been synthesized with ethylenediamine (en), 1,3 propanediamine(tn) and 1,2-cyclohexanediamine(chxn):trans-[CrF2(aa)(bb)]Br (aa=en, bb=tn; aa=tn, bb= chxn) andcis-[CrF2(aa)(bb)]Br (aa=en, bb=chxn). The corresponding fluoroaqua(diamine) (diamine)chromium(III) complexes have been prepared by acid hydrolysis as perchlorate or iodide salts. All have been characterized by chemical analysis, electronic and i.r. spectra and conductivity measurements.  相似文献   

20.
Reactions of CuX2.nH2O with the biscarboxylate ligand XDK (H2XDK = m-xylenediamine bis(Kemp's triacid imide)) in the presence of N-donor auxiliary ligands yielded a series of dicopper(II) complexes, [Cu2(mu-OH)(XDK)(L)2]X (L = N,N,N',N'-tetramethylethylenediamine (tetmen), X = NO3 (1a), Cl (1b); L = N,N,N'-trimethylethylenediamine (tmen), X = NO3 (2a), Cl (2b); L =2,2'-bipyridine (bpy), X = NO3 (3); L = 1,10-phenanthroline (phen), X = NO3 (4); L = 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), X = NO3 (5); L = 4-methyl-1,10-phenanthroline (Mephen), X = NO3 (6)). Complexes 1-6 were characterized by X-ray crystallography (Cu...Cu = 3.1624(6)-3.2910(4) A), and the electrochemical and magnetic properties were also examined. Complexes 3 and 4 readily reacted with diphenyl phosphoric acid (HDPP) or bis(4-nitrophenyl) phosphoric acid (HBNPP) to give [Cu2(mu-phosphate)(XDK)(L)2]NO3 (L = bpy, phosphate = DPP (11); L = phen, phosphate = DPP (12), BNPP (13)), where the phsophate diester bridges the two copper ions in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.268(3)-4.315(1) A). Complexes 4 and 6 with phen and Mephen have proven to be good precursors to accommodate a series of sugar monophosphate esters (Sugar-P) onto the biscarboxylate-bridged dicopper centers, yielding [Cu2(mu-Sugar-P)(XDK)(L)2] (Sugar-P = alpha-D-Glc-1-P (23a and b), D-Glc-6-P (24a and b), D-Man-6-P (25a), D-Fru-6-P (26a and b); L = phen (a), Mephen (b)) and [Cu2(mu-Gly-n-P)(XDK)(Mephen)2] (Gly-n-P = glycerol n-phosphate; n = 2 (21), 3 (22)), where Glc, Man, and Fru are glucose, mannose, and fructose, respectively. The structure of [Cu2(mu-MNPP)(XDK)(phen)2(CH3OH)] (20) was characterized as a reference compound (H2MNPP = 4-nitrophenyl phosphoric acid). Complexes 4 and 6 also reacted with d-fructose 1,6-bisphosphate (D-Fru-1,6-P2) to afford the tetranuclear copper(II) complexes formulated as [Cu4(mu-D-Fru-1,6-P2)(XDK)2(L)4] (L = phen (27a), Mephen (27b)). The detailed structure of 27a was determined by X-ray crystallography to involve two different tetranuclear complexes with alpha- and beta-anomers of D-Fru-1,6-P2, [Cu4(mu-alpha-D-Fru-1,6-P2)(XDK)2(phen)4] and [Cu4(mu-beta-D-Fru-1,6-P2)(XDK)2(phen)4], in which the D-Fru-1,6-P2 tetravalent anion bridges the two [Cu2(XDK)(phen)2]2+ units through the C1 and C6 phosphate groups in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.042(2)-4.100(2) A). Notably, the structure with alpha-D-Fru-1,6-P2 demonstrated the presence of a strong hydrogen bond between the C2 hydroxyl group and the C1 phosphate oxygen atom, which may support the previously proposed catalytic mechanism in the active site of fructose-1,6-bisphosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号