首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the electro-optical properties of zigzag BNNTs, under an external electric field, using the tight binding approximation. It is found that an electric field modifies the band structure and splits the band degeneracy. Also the large electric strength leads to coupling the neighbor subbands which these effects reflect in the DOS and JDOS spectrum. It has been shown that, unlike CNTs, the band gap of BNNTs can be reduced linearly by applying a transverse external electric field. Also we show that the larger diameter tubes are more sensitive than small ones. The semiconducting metallic transition can be achieved through increasing the applied fields. The number and position of peaks in the JDOS spectrum are dependent on electric field strength. It is found that at a high electric field, the two lowest subbands are oscillatory with multiple nodes at the Fermi level.  相似文献   

2.
In this paper, we investigate the electronic structure of both armchair and zigzag α-graphyne nanoribbons. We use a simple tight binding model to study the variation of the electronic band gap in α-graphyne nanoribbon. The effects of ribbon width, transverse electric field and edge shape on the electronic structure have been studied. Our results show that in the absence of external electric field, zigzag α-graphyne nanoribbons are semimetal and the electronic band gap in armchair α-graphyne nanoribbon oscillates and decreases with ribbon's width. By applying an external electric field the band gap in the electronic structure of zigzag α-graphyne nanoribbon opens and oscillates with ribbon width and electric field magnitude. Also the band gap of armchair α-graphyne nanoribbon decreases in low electric field, but it has an oscillatory growth behavior for high strength of external electric field.  相似文献   

3.
Using the first-principles calculations, electronic properties for the F-terminated AlN nanoribbons with both zigzag and armchair edges are studied. The results show that both the zigzag and armchair AlN nanoribbons are semiconducting and nonmagnetic, and the indirect band gap of the zigzag AlN nanoribbons and the direct band gap of the armchair ones decrease monotonically with increasing ribbon width. In contrast, the F-terminated AlN nanoribbons have narrower band gaps than those of the H-terminated ones when the ribbons have the same bandwidth. The density-of-states (DOS) and local density-of-states (LDOS) analyses show that the top of the valence band for the F-terminated ribbons is mainly contributed by N atoms, while at the side of the conduction band, the total DOS is mainly contributed by Al atoms. The charge density contour analyses show that Al–F bond is ionic because the electronegativity of F atom is much stronger for F atom than for Al atom, while N–F bond is covalent because of the combined action of the stronger electronegativity and the smaller covalent radius.  相似文献   

4.
By using the first-principles calculations, we investigate the effects of electric field on electronic structures of armchair and zigzag arsenene nanoribbons (AsNRs) with different widths. The results show that for each case, quantum size effects induce a smaller band gap in larger AsNRs. Moreover, electric field can reduce effectively the band gap of AsNRs. In addition, the electric field can induce only the transition of band structures in the A-AsNRs or Z-AsNRs with narrow size. The band gap decrease more rapidly and the threshold electric field induced metal becomes smaller in the wider AsNRs.  相似文献   

5.
采用基于密度泛函理论的第一性原理计算研究了电场对BN纳米管的电子结构的影响.首先对在不同电场强度下的纳米管几何结构进行了优化,可以看出纳米管沿轴方向层间距出现了不规则的变化.电子能带结构显示,在电场作用下,zigzag型和armchair型两种结构纳米管的能带向低能方向移动,并且导致纳米管的带隙有显著的减小.电场使得armchair型纳米管的带隙发生了从间接带隙向直接带隙的转变.在电场作用下,纳米管的两端态密度呈现出明显的差异,正负电荷沿轴向出现了沿轴向的空间分离,Mulliken电荷分布图揭示出最高占据轨道和最低未占据轨道分居在纳米管的两端.  相似文献   

6.
In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate different mechanisms of band gap tuning of silicene. We optimized structures of silicene sheet, functionalized silicene with H, CH3 and F groups and nanoribbons with the edge of zigzag and armchair. Then we calculated electronic properties of silicene, functionalized silicene under uniaxial elastic strain, silicene nanoribbons and silicene under external electrical fields. It is found that the bond length and buckling value for relaxed silicene is agreeable with experimental and other theoretical values. Our results show that the band gap opens by functionalization of silicene. Also, we found that the direct band gap at K point for silicene changed to the direct band gap at the gamma point. Also, the functionalized silicene band gap decrease with increasing of the strain. For all sizes of the zigzag silicene nanoribbons, the band gap is near zero, while an oscillating decay occurs for the band gap of the armchair nanoribbons with increasing the nanoribbons width. At finally, it can be seen that the external electric field can open the band gap of silicene. We found that by increasing the electric field magnitude the band gap increases.  相似文献   

7.
Within tight-binding model, the band gaps of armchair and zigzag carbon nanotubes (CNTs) under both uniaxial tensile and torsional strains have been studied. It is found that the changes in band gaps of CNTs depend strongly on the strain type. The torsional strain can induce a band gap for armchair CNTs, but it has little effect on band gap of the zigzag CNTs. While the tensile strain has great effect on band gap of zigzag CNTs, but it has no effect on that of the armchair CNTs. More importantly, when both the tensile and torsional strains are simultaneously applied to the CNTs, the band gap changes of armchair CNTs are not equal to a simple sum over those induced separately by uniaxial tensile and torsional strains. There exists a cooperative effect between two kinds of strains on band gap changes of armchair CNTs. But for zigzag CNTs, the cooperative effect was not found. Analytical expressions for the band gaps of armchair and zigzag CNTs under combined uniaxial–torsional strains have been derived, which agree well with the numerical results.  相似文献   

8.
The electronic transport properties of single-walled ZnO nanotubes with different chiralities are investigated by nonequilibrium Green's function combined with density functional theory. In this paper we consider three representative ZnO nanotubes, namely (3, 3) armchair, (5, 0) zigzag, and (4, 2) chiral, with a similar diameter of about 5.4 Å. Short nanotubes exhibit good conductance behavior. As the tube length increases, the conductance decreases at low bias and the nanotubes indicate semiconducting behavior. The current-voltage characteristics of the nanotubes longer than 3 nm depend weakly on the length of the tubes. The armchair and chiral ZnO nanotubes with the same length and diameter have almost overlapped current-voltage curves. The electron transport behaviors are analyzed in terms of the transmission spectra, density of states and charge population of these nanotubes. The results indicate that the resonant peaks above the Fermi level are responsible for electric currents. However, the zigzag ZnO nanotubes exhibit asymmetric current-voltage curves attributed to the built-in polarization field and give larger current than the armchair and chiral nanotubes at the same bias. The features explored here strongly suggest that the ZnO nanotubes are stable, flexible structures, which are valuable in Nano-Electromechanical System.  相似文献   

9.
冯小勤  贾建明  陈贵宾 《物理学报》2014,63(3):37101-037101
BN纳米片是具有一定宽度、无限长度的一维蜂窝构型单层带状氮化硼材料,弯曲的BN纳米片因为P z轨道旋转,将表现出一定的独特的电子性质.通过第一性原理计算,利用MS(Material Studio)中的DMOL3(local density functional calculations on molecules)软件计算了Zigzag和Armchair型BN纳米片弯曲以后的能带结构.BN纳米带的带隙会随着弯曲角度的变化而改变,以Armchair型BN纳米带的变化较为明显;在弯曲的基础上再加入外电场,却是Zigzag型BN纳米带的带隙变化更显著.当电场加大到一定的值,纳米带就会从半导体变为金属,并且这一临界电场值的大小和纳米带的弯曲程度有关.电场对带隙的调制还和纳米带的尺寸有关系,电场对大尺度的纳米带的调控性更好,从半导体转变为金属所需要的电场值要更小.  相似文献   

10.
刘红  印海建  夏树宁 《物理学报》2009,58(12):8489-8500
在紧束缚理论的基础上,推导出轴向拉伸和扭转形变时碳纳米管(CNT)的能带公式.结果显示拉伸和扭转形变都可以改变CNT的导电性质,在金属型和半导体型之间转变,特别是对于锯齿型CNT,根据n 与3的余数关系,在拉伸和扭转中分别显示出三种不同的变化规律.进一步应用场效应晶体管Natori理论模拟计算形变对CNT场效应晶体管的电流-电压特性的影响,锯齿型CNT根据n 与3的余数关系表现出不同的电流变化趋势,而对于扶手椅型CNT轴向拉伸不改变电流;在扭转形变时,CNT电流急剧升高,特别是扶手椅型CNT.锯齿型CNT和扶手椅型CNT的电流随扭转角度和外电压行为明显不同.在某些特定的扭转角度,电流随扭转角度变化非常显著,显示出锯齿型CNT和扶手椅型CNT发生半导体型与金属型之间的转变. 关键词: 碳纳米管 紧束缚理论 费米能级 能带结构  相似文献   

11.
The structural and electronic properties of semiconductors (Si and Ge) and metal (Au and Tl) atoms doped armchair (n, n) and zigzag (n, 0); n=4–6, single wall carbon nanotubes (SWCNTs) have been studied using an ab-initio method. We have considered a linear chain of dopant atoms inside CNTs of different diameters but of same length. We have studied variation of B.E./atom, ionization potential, electron affinity and HOMO–LUMO gap of doped armchair and zigzag CNTs with diameter and dopant type. For armchair undoped CNTs, the B.E./atom increases with the increase in diameter of the tubes. For Si, Ge and Tl doped CNTs, B.E./atom is maximum for (6, 6) CNT whereas for Au doped CNTs, it is maximum for (5, 5) CNTs. For pure CNTs, IP decreases slightly with increasing diameter whereas EA increases with diameter. The study of HOMO–LUMO gap shows that on doping metallic character of the armchair CNTs increases whereas for zigzag CNTs semiconducting character increases. In case of zigzag tubes only Si doped (5, 0), (6, 0) and Ge doped (6, 0) CNTs are stable. The IP and EA for doped zigzag CNTs remain almost independent of tube diameter and dopant type whereas for doped armchair CNTs, maximum IP and EA are observed for (5, 5) tube for all dopants.  相似文献   

12.
Structural and electronic properties as well as the stability of MoS2 nanotubes are studied using the density-functional-based tight-binding method. It is found that MoS2 zigzag ( n,0) nanotubes exhibit a narrow direct band gap and MoS2 armchair ( n,n) possess a nonzero moderate direct gap. Interestingly, the ( n,n) tubes show a small indirect gap similar to the direct gap of ( n,0) nanotubes. Simulated electron diffraction patterns confirm the existence of armchair and zigzag disulphide nanotubes. The structure of the MoS2 nanotube tips is explained by introducing topological defects which produce positive and negative curvature.  相似文献   

13.
Frank J. Owens 《Molecular physics》2013,111(21-23):2441-2443
The electronic properties, band gap and ionization potential as well as the energies of the singlet and triplet states of zigzag and armchair graphene nanoribbons are calculated as a function of the number of oxygen atoms on the ribbon employing density functional theory at B3LYP/6-31G* level. The calculated band gaps indicate that both structures are semiconducting. The band gap of the armchair ribbons initially decreases followed by an increase with oxygen number. For zigzag ribbons the band gap decreases with increasing oxygen number whereas the ionization potential increases with oxygen content. In both armchair and zigzag ribbons the ionization potential shows a gradual increase with the number of oxygen atoms. Some of the oxygenated ribbons calculated have triplet ground states and have the density of states at the Fermi level for spin down greater than spin up suggesting the possibility they may be ferromagnetic semiconductors.  相似文献   

14.
《Physics letters. A》2014,378(5-6):565-569
The band-gap modulation of zigzag and armchair graphane-like SiC nanoribbons (GSiCNs) under uniaxial elastic strain is investigated using the density functional theory. The results show that band gap of both structures all decreases when being compressed or tensed. In compression, both zigzag and armchair GSiCNs are semiconductors with a direct band gap. However, in tension, the armchair GSiCNs undergo a direct-to-indirect band-gap transition but the zigzag GSiCNs still have a direct band gap. These results are also proved by HSE06 method. This implies a potential application of the graphane-like SiC nanoribbons in the future pressure sensor and optical electronics nanodevices.  相似文献   

15.
Structural and electronic properties of narrow single-walled GaN nanotubes with diameter from 0.30 to 0.55 nm are investigated using the density functional method with generalized-gradient approximation. The calculations of total energies predict that the most likely GaN nanotubes in our calculation are (2,2), (3,2) and (3,3) nanotubes. From a detailed analysis we find that these narrow single-walled GaN nanotubes are all semiconductors, of which the armchair and chiral tubes are indirect-band-gap semiconductors whereas the zigzag ones have a direct gap except for (4,0) tube. The indirect band gap of (4,0) tube can stem from band sequence change induced by curvature effect. Our results show that the π-π hybridization effect and the formation of benign buckling separations play a key role in the band sequence changes of (4,0) tube.  相似文献   

16.
Mechanism of Carbon Nanotubes Aligning along Applied Electric Field   总被引:1,自引:0,他引:1       下载免费PDF全文
The mechanism of single-walled carbon nanotubes (SWCNTs) aligning in the direction of external electric field is studied by quantum mechanics calculations. The rotational torque on the carbon nanotubes is proportional to the difference between the longitudinal and transverse polarizabilities and varies with the angle of SWCNTs to the external electric field. The longitudinal polarizability increases with second power of length, while the transverse polarizability increases linearly with length. A zigzag SWCNT has larger longitudinal and transverse polarizabilities than an armchair SWCNT with the same diameter and the discrepancy becomes larger for longer tubes.  相似文献   

17.
F. Buonocore 《哲学杂志》2013,93(7):1097-1105
In this paper we investigate nitrogen- and boron-doped zigzag and armchair single-wall carbon nanotubes (SWNTs) with theoretical models based on the density functional theory. We take into account nitrogen and boron doping for two isomers in which substitutive atoms are on opposite sides of the tube, but only in one isomer the impurity sites are symmetrical with respect to the diameter. The band structures show a strong hybridization with impurity orbitals that change the original band structure. Although the two isomers of armchair SWNT exhibit the same formation energy, their band structures are different. Indeed asymmetrical isomers are gapless and exhibit a crossing of valence and conduction bands at k?=?π/c, leading to metallic SWNTs. Band structures of symmetrical isomers, on the other hand, exhibit an energy gap of 0.4?eV between completely filled valence and empty conduction bands. We use density of charge in order to understand this difference. In zigzag SWNT an impurity band is introduced in the energy gap and for N doping this band is just partially occupied in such a way that the electronic behaviour is reversed from semiconductor to metallic. Whereas for a given isomer armchair SWNT shows similar behaviours of N- and B-doped structures, B-doped zigzag SWNTs present different band structure and occupation compared to the N-doped case.  相似文献   

18.
The electric field effect in ultrathin zigzag graphene nanoribbons containing only three or four zigzag carbon chains is studied by first-principles calculations, and the change of conducting mechanism is observed with increasing in-plane electric field perpendicular to the ribbon. Wider zigzag graphene nanoribbons have been predicted to be spin-splitted for both valence band maximum(VBM) and conduction band minimum(CBM) with an applied electric field and become half-metal due to the vanishing band gap of one spin with increasing applied field. The change of VBM for the ultrathin zigzag graphene nanoribbons is similar to that for the wider ones when an electric field is applied. However, in the ultrathin zigzag graphene nanoribbons, there are two kinds of CBMs, one is spin-degenerate and the other is spin-splitted, and both are tunable by the electric field. Moreover, the two CBMs are spatially separated in momentum space. The conducting mechanism changes from spin-degenerate CBM to spin-splitted CBM with increasing applied electric field. Our results are confirmed by density functional calculations with both LDA and GGA functionals, in which the LDA always underestimates the band gap while the GGA normally produces a bigger band gap than the LDA.  相似文献   

19.
We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.  相似文献   

20.
The structural, electronic, elastic, mechanical properties and stress-strain relationship of chair, boat, and stirrup conformers of fully hydrogenated h-BN(fh-BN) are investigated in this work using the Perdew-Burke-Ernzerhof(PBE) function in the frame of density functional theory. The achieved results for the lattice parameters and band gaps of three conformers in this research are in good accordance with other theoretical results. The band structures of three conformers show that the chair, boat, and stirrup are direct band gap with a band gaps of(3.12, 4.95, and4.95 e V), respectively. To regulate the band structures of fh-BN, we employ a hybrid functional of Heyd-ScuseriaErnzerhof(HSE06) calculations and the band gaps are 3.84(chair), 6.12(boat), and 6.18 e V(stirrup), respectively.The boat and stirrup fh-BN exhibits varying degrees of mechanical anisotropic properties with respect to the Young's modulus and Poisson's ratio, while the chair fh-BN exhibits the mechanical isotropic properties. Furthermore, tensile strains are applied in the armchair and zigzag directions related to tensile deformation of zigzag and armchair nanotubes,respectively. We find that the ultimate strains in zigzag and armchair deformations in stirrup conformer are 0.34 and0.25, respectively, larger than the strains of zigzag(0.29) and armchair(0.18) deformations in h-BN although h-BN can surstain a surface tension up to the maximum stresses higher than those of three conformers of fh-BN. Furthermore, the band gap energies in three conformers can be modulated effectively with the biaxial tensile strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号