首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods of synthesis of binuclear pivalate complexes L2Ln2(μ-O2-OOCCMe3)22-O,O′-OOCCMe3)22-OOCCMe3)2, where Ln = Sm, Eu, Gd, or Er and L = 2,2′-dipyridyl (Bipy) or 1,10-phenanthroline (Phen), from the corresponding binuclear complexes Ln22-OOCCMe3)4(OOCCMe3)2(HOOCCMe3)6 · HOOCCMe3(I–IV), as well as of coordination polymers {Ln(OOCCMe3)3} n , were suggested. The compounds were characterized by X-ray crystallography and X-ray powder diffraction and their magnetic properties, solid-phase thermolysis, and the phase composition of solid decomposition products were studied. The structures of the metal carboxylate core and surrounding ligands were shown to have an effect on the thermal stability of the complexes. The luminescence properties of the Eu(III) complexes were analyzed.  相似文献   

2.
The formation of magnetically active polynuclear FeIII pivalates in the FeSO4·7H2O-KOOCCMe3 system was studied. The reaction of FeSO4·7H2O (1) with KOOCCMe3 in EtOH in air afforded the antiferromagnetic trinuclear complex [Fe3O(OOCCMe3)6(H2O)3]+[OOCCMe3]·3EtOH. A change of the solvent (EtOH) in this system to a 40:1 benzene—THF mixture resulted in the formation of the antiferromagnetic hexanuclear cluster [Fe6(O)2(OH)2(OOCCMe3)12(HOOCCMe3)(THF)]·1.5C6H6. The addition of trimethylacetic acid to EtOH and recrystallization from hexane gave rise to the antiferromagnetic coordination polymer [K2Fe4(O)2(OOCCMe3)10(HOOCCMe3)2(H2O)2]n (7). Recrystallization of the latter from acetonitrile afforded the antiferromagnetic tetranuclear complex K2Fe4(O)2(OOCCMe3)10(HOOCCMe3)2(MeCN)2. The structures of these compounds were established by X-ray diffraction analysis, and their magnetic susceptibilities and thermal decomposition were investigated.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2403–2413, November, 2004.  相似文献   

3.
Kinetic analysis of the thermolysis of samarium pivalate [Sm22-OOCCMe3)4(OOCCMe3)2(HOOCCMe3)6] · HOOCCMe3 (1) was carried out (the input data were differential scanning calorimetry (DSC) and thermogravimetry data), and a mathematic model of the process was developed that allowed us to optimize (by calculation) the conditions for formation of {Sm(OOCCMe3)3} n (2) samarium tris-pivalate via thermal decomposition of complex 1. The results of the thermal study of samarium and gadolinium tris-pivalates in the temperature range of −50…+50°C are reported. Specific anomalies were found in the DSC curves and heat capacity versus temperature curves in the temperature range of 0–50°C.  相似文献   

4.
A coordination polymer of the general formula [Co(OOCCMe3)2]n (2) was prepared by mild thermolysis of the coordination polymer of variable composition [(HOOCCMe3)xCo(OH)n(OOCCMe3)2−n ]m, the dinuclear cobalt complex Co2(μ-H2O)(OOCCMe3)4(HOOCCMe3)4, the tetranuclear cobalt cluster Co43-OH)2(OOCCMe3)6(HOEt)6, and the hexanuclear cluster [Co64-O)2n-OOCCMe3)10(C4H8O)3(H2O)]·1.5(C4H8O) (7) in organic solvents. In the crystal, the polymer has a chain structure. Unlike thermolysis of cobalt pivalates, thermolysis of the dinuclear complex Ni2(μ-H2O)(OOCCMe3)4(HOOCCMe3)4 gave rise to the hexanuclear complex Ni62-OOCCMe3)63-OOCCMe3)6 (3). The magnetic properties of compound 2 are substantially different from those of 3. Compound 2 undergoes the magnetic phase transition into the ordered state at T c = 3.4 K (H = 1 Oe), whereas compound 3 exhibits antiferromagnetic properties. Solid-state decomposition of polymeric cobalt carboxylate 2 (below 350 °C) afforded the octanuclear cluster Co84-O)22-OOCCMe3)63-OOCCMe3)6 (9) as the major product, which sublimes without decomposition. Decomposition of 3 gave nickel oxide as the final product. Pivalates 2 and 3 reacted with 2,3-lutidine in acetonitrile at 80 °C to form the isostructural dinuclear complexes (2,3-Me2C5H3N)2M2(μ-OOCCMe3)4 (M = Co or Ni). The structures of compounds 3 and 7 were established by X-ray diffraction. The structure of polymer 2 was determined by powder X-ray diffraction analysis. Dedicated to Academician O. M. Nefedov on the occasion of his 75th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1841–1850, November, 2006.  相似文献   

5.
Microcalorimetric measurements at elevated temperatures of the heats of thermal decomposition and iodination have led to values of the standard enthalpies of formation of the following crystalline compounds (values given in kJ mol?1) at 298K: [Cr(η6-1,3,5-C6H3(CH3)3)2] = (63±12); [Cr(η6-C6(CH3)6)2] : -(88±12); [Cr(1,2,3,4,4a,8a-η-C10H8)2] = (407±11); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = -(258±8). Separate measurements by the vacuum sublimation microcalorimetric technique gave the following values for the enthalpy of sublimation at 298K (kJ mol?1) : [Cr(η6-1,3,5-C6H3(CH3)3)2] = (104±1); [Cr(η6-C6(CH3)6)2] = (119±4); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = (107±3). From these and other data, the bond enthalpy contributions of the metal-ligand bonds in the gaseous metal complexes were evaluated as follows: [(η6-C6(CH3)6)-Cr] (155±7); [(η6-C6H3(CH3)3)-Cr] (151±6); [(1,2,3,4,4a, 8a-η-C10H8)-Cr](145±6) kJ mol?1]The question of the transferability of the enthalpy contributions of chromium—ligand bonds between organochronium complexes is discussed with aid of information from structural and spectroscopic investigation. The limitations of the procedure are defined.The thermodynamic data are used to discuss various substitution, redistribution and exchange reaction of Cr(η-arene)2 and [Cr(CO)3(η-arene)] compounds.  相似文献   

6.
The reaction of propargylamine with the hexanuclear complex CoII 6(3-OH)2(OOCCMe3)10(HOOCCMe3)4 or the polymer [Co(OH)n(OOCCMe3)2–n]x under an argon atmosphere afforded the unstable paramagnetic tetramine complex CoII(OOCCMe3)2(H2NCH2CCH)4 (1). In air, if an excess of propargylamine is present, the latter complex is transformed into the complex CoIII(OOCCMe3)2(NH2CH2CCH)2[2-N,N"-(HCCCH2N=CHCHCH=N—CH2CCH)] (2) containing a new ligand, viz., the 1,3-di(propargylimino)propane anion, which is a formal analog of the acetylacetonate anion. In contrast to propargylamine, 1,3-diaminopropane reacted with the CoII trimethylacetate clusters in air to produce the cationic complex [CoIII{1,3-(NH2)2(CH2)3}2(OOCCMe3)2]+OOCCMe3 (3) without entering into condensation reactions. The structures of the resulting complexes were determined by X-ray diffraction analysis.  相似文献   

7.
New double silylene‐bridged binuclear zirconium complexes [(η5‐RC5H4)ZrCl2]2[μ,μ‐(SiMe2)25‐C5H3)2] [R = H ( 1 ), Me ( 2 ), nPr ( 3 ), iPr ( 4 ), nBu ( 5 ), allyl ( 6 ), 3‐butenyl ( 7 ), benzyl ( 8 ), PhCH2CH2 ( 9 ), MeOCH2CH2 ( 10 )] were synthesized by the reaction of (η5‐RC5H4)ZrCl3·DME with [μ,μ‐(SiMe2)25‐C5H3)2]2? ( L2? ) in THF, and they were all well characterized by 1H NMR, MS, IR, and EA. The binuclear structure of Complex 3 was further confirmed by X‐ray diffraction, where the two zirconium centers are located trans relative to the bridging [μ,μ‐(SiMe2)25‐C5H3)2] moiety. When activated with methylaluminoxane (MAO), this series of zirconium complexes are highly active catalysts for the polymerization of ethylene even under very low molar ratio of Al/Zr (Complex 7 , 5.41 × 105 g‐PE/mol‐Zr·h, Al/Zr = 50) and linear polyethylenes (PEs) with broad molecular weight distribution (MWD, Mw/Mn = 7.31–27.6) was obtained. The copolymerization experiments indicate that these complexes are also very efficient in the incorporation of 1‐hexene into the growing PE chain in the presence of MAO (Complex 6 , 3.59 × 106 g‐PE/mol‐Zr·h; 1‐hexene content, 3.65%). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4901–4913, 2007  相似文献   

8.
《Polyhedron》1987,6(4):685-693
The strength of multiple metal-metal bonds in the metal dimers M2 (M = Cr, Mo or W) and binuclear complexes M2(OH)6 (M = Cr, Mo or W), M2Cl4(PH3)4 M = V, Cr, Mn, Nb, Mo, Tc, Ta, W or Re) has been studied by a non-local density functional theory. The method employed here provides metal-metal bond energies [D(M-M)] in good accord with experiments for Cr2 and Mo2, and predicts that W2 of the three dimers M2 (M = Cr, Mo or W) has the strongest metal-metal bond with D(W-W) = 426 kJ mol−1 and R(W-W) = 2.03 Å. Among the binuclear complexes studied here we find the 3d elements to form relatively weak metal-metal bonds (40–100 kJ mol−1), compared to the 4d and 5d elements with bonding energies ranging from 250 to 450 kJ mol−1. The metal-metal bond for a homologous series is calculated to be up to 100 kJ mol−1 stronger for the 5d complex, than for the 4d complex. An energy decomposition of D(M-M) revealed that the σ-bond is somewhat stronger than each of the π-bonds, and one order of magnitude stronger than the δ-bond. For the same transition metal we find D(M-M) to be larger for M2(PH3)4Cl4 (M = Cr, Mo or W) than for M2(OH)6 (M = Cr, Mo or W), and attribute this to a stronger π-interaction in the former series. While many of the findings here are in agreement with previous HFS studies, the order of stability D(3d-3d) « D(4d-4d) < D(5d-5d) differs from the order D(3d-3d) « D(5d-5d) < D(4d-4d) obtained by the HFS method, and the present method provides in general more modest values for D(M-M) than the HFS scheme.  相似文献   

9.
Methods were developed for the controlled thermal synthesis of high-spin cubane-like pivalates {MII 43−OR)4} (M = Co or Ni; R = H or Me) starting from mono-and polynuclear complexes. The solid-state thermal decomposition of the known pivalate clusters [MII 43−OMe)4−(μ2−OOCBut)22−OOCBut)2(MeOH)4] and the new clusters [M4II3)−OH41−OOCBut)3−(μ−(NH2)2C6H2Me2)31−(NH2)2C6H2Me2)3]+(OOCBut)− (M = Co or Ni) was studied by differential scanning calorimetry and thermogravimetry. The thermolysis of cubane-like CoII and NiII pivalates is a destructive process. The phase composition of the decomposition products is determined by the nature of coordinated ligands and the structural features of the metal core.  相似文献   

10.
The interaction of [K2FeIII 4(O)2(OOCCMe3)10(HOOCCMe3)2(H2O)2]n with 2-pyridinecarboxaldehyde results in a mixed-valence complex FeIIFeIII 33-O)22-OOCCMe3)7L2··2.5MeCN·3H2O (L = 2-NC5H4COOH0.75K0.25). The structure of the complex was established by X-ray analysis. The magnetic properties of the complex were studied. Dedicated to Academician A. L. Buchachenko on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2145–2148, September, 2005.  相似文献   

11.
The static magnetic susceptibility of mononuclear trimethylacetate nickel complex Ni(NH2Ph)4(OOCCMe3)2 (3) and binuclear complexes Ni2(μ-OH2)(μ-OOCCMe3)2(OOCCMe3)2(dipy)2 (4) and Ni2(μ-OOCCMe3)4py2 (5) was measured in the temperature range of 2–300 K. The magnetic behavior of3 is typical of mononuclear complexes with the Ni11 atom in the octahedral environment. Numerical calculations of the temperature dependence of magnetic susceptibility with inclusion of isotropic exchange interactions (J) and single-ion initial splitting parameters showed that the magnetic behavior of complexes4 and 5 can be interpreted in terms of ferromagnetic (for4) and antiferromagnetic (for5) interactions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 437–442, March, 2000.  相似文献   

12.
New series of mono and binuclear arene ruthenium complexes [{(η6-arene)RuCl(L)}]+ and [{(η6-arene)RuCl}2(μ-L)2]2+ (arene=benzene, p-cymene or hexamethylbenzene), {L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)-aldimine (pbp) and p-bi-phenylene-bis(picoline)-aldimine (bbp)} are reported. The complexes have been fully characterized and molecular structure of the representative mononuclear complex [(η6-C6Me6)RuCl(paa)]BF4 (1), binuclear complexes [{(η6-C10H14)RuCl}2(μ-paa)](BF4)2 (3) and [{(η6-C10H14)RuCl}2(μ-pbp)](BF4)2 (6) have been determined by single crystal X-ray diffraction analyses. Single crystal X-ray structure determination revealed that in the binuclear complexes the [(η6-C10H14)RuCl]+ units are trans disposed. Further, the crystal packing in the complexes 1, 3 and 6 is stabilized by C-H?X type (X=Cl, F) inter, intramolecular hydrogen bonding and π-π stacking (3). To explore the ambiguous nature of the bonding between pyridine-2-carbaldehyde azine (paa) with ruthenium containing units [(η6-arene)RuCl]+, DFT/B3LYP calculations have been performed on the complexes [(η6-arene)RuCl(paa)]+ (arene=C6H6, I; C6Me6, II; C10H14, III).  相似文献   

13.
[Co(R-η-C3H4)(η-C5H5)I] is a good precursor for the preparation of some new cationic complexes as the iodide can easily be replaced; thus addition of PEt3 to the iodo-complex (R  H) gives [Co(η-C3H5)(η-C5H5)(PEt3)]+. The reactions of [Co(R-η-C3H4)(η-C5H5))I] (R  H or 2-Me) with AgBF4 give solutions containing the coordinatively unsaturated species [Co(R-η-C3H4)(η-C5H5)+. The presence of traces of water leads to the formation of [Co(R-ηC3H4)-(η-C5H5)(H2O)]+. The addition of monodentate ligands L  PEt3 PPh3, AsPh3, SbPh3, CNCH3 and bidentate ligands LL  Ph2PCH2CH2PPh2(dppe) and o-C6H4(AsMe2)2(diars), gives, respectively mononuclear [Co(2-Me-ηC3H4)-(η-C5H5)L]+ and binuclear ligand-bridged [(2-Me-ηC3H4)(η-C5H5)CoLLCo(2-Me-ηC3H4)(η-C5H5))]2+ complexes. Crystals of [Co(2-Me-ηC3H4)(η-C5H5)-(H2O)]+[BF4]- are monoclinic, space group P21/c, with a 7.858(3), b 10.262(4), c 15.078(4) Å, β 98.36(1)°. The molecular structure contains the cobalt atom bonded to planar 2-Me-allyl and cyclopentadienyl substituents, which are almost parallel with the H2O molecule in a staggered conformation with respect to the 2-Me group.  相似文献   

14.
The reaction of (η5-C5H5)W(CO)2(NO), 6W, with P(CH3)3 proceeds rapidly at 25°C to give (η5-C5H5)W(CO)(NO)[P(CH3)3], 7W. The rate of formation of 7W was found to be 4.48 × 10?2M?1 [6W] [P(CH3)3] at 25.0°c in THF. In neat P(CH3)3 at ?23°C, 6W is converted to (η1-C5H5)W(CO)2(NO)[P(CH3)3]2, 8W. In dilute solution, 8W decomposes to initially give a 2:1 mixture of 6W and 7W. The mixture is then converted to 7W. The reaction of (η5-C5H5)Mo(CO)(NO), 6Mo, with P(CH3)3 is 6.1 times faster than that of the tungsten analog.  相似文献   

15.
A one‐step synthetic method was developed for allylation of benzamides using Ni(COD)2/RCO2H and [Ni(μ‐H2O)(OOCCMe3)2(HOOCCMe3)2]2 ( A′ ) catalytic system. Efficient, well‐defined, air and moisture‐stable Ni–pivalate complex was isolated and employed in catalytic allylation. The influence of solvent on product selectivity was also investigated.  相似文献   

16.
Microcalorimetric measurements at 520–523 K of the heats of thermal decomposition and of iodination of bis-(benzene)molybdenum and of bis-(toluene)tungsten have led to the values (kJ mol?): ΔHof[Mo(η-C6H6)2, c] = (235.3 ± 8) and ΔHof[W(η6-C7H8)2, c] = (242.2 ± 8) for the standard enthalpies of formation at 25°C. The corresponding ΔHof(g) values, using available and estimated enthalpies of sublimation, are (329.9 ± 11) and 352.2 ± 11) respectively, from which the metalligand mean bond-dissociation enthalpies, D(Mo—benzene) = (247.0 ± 6) and D(W—toluene) = (304.0 ± 6) kJ mol?1, are derived.  相似文献   

17.
The molecule (η5-pentamethylcyclopentadienyl)(methyldiphenylphosphinite-P)dichlororhodium(III), [(η5-C5Me5)RhCl2(PPh2OMe)], crystallizes in the monoclinic crystal system in space group P21/c with unit cell parameters a = 16.056(3) Å, b = 9.4331(18) Å, c = 15.745(3) Å, β = 108.330(4)°, V = 2263.8(7) Å3 and Z = 4. There is three-legged piano stool geometry about Rh. The Rh-P distance of 2.278(2) Å is shorter than those of [(η5-C5Me5)RhCl2(PPh2OR)] where R is an aryl group, and longer than those found in [(η5-C5Me5)RhCl2{PPh(OR)2}]. The structure reveals significant distortion of the pentamethylcyclopentadienyl towards ′η32-enyl-ene′ coordination.  相似文献   

18.
We report the results of a structural investigation of the nonstoichiometric solid solutions (Bi2O3)1−x(M2O3)x (M = Y, Er, or Yb) treated at temperatures of between 298 and 1023 K and at pressures of up to 4 GPa. For x = 0.25 and M = Er or Y, 4 GPa pressure at 873 K causes the fluorite-related phase stable under ambient conditions to transform to a monoclinic phase which on subsequent annealing transforms to a rhombohedral phase isostructural with that adopted by the solid solution (Bi2O3)1−x(Sm2O3)x under ambient conditions. For x = 0.4 and M = Er or Y, application of 4 GPa at 1073 K causes the fluorite phase to undergo a distortion to another rhombohedral structure with a smaller unit cell. No transitions were found in the Yb3+-doped system.  相似文献   

19.
A novel bimetallic Cr3Yb3 coordination compound containing a 3d-4f heterometallic Cr2Yb3 cationic cluster has been synthesized and structurally characterized. The crystal structure was determined by X-ray analysis. Results denote that the complex consists of an original [Cr 2 III Yb 3 III ]3+ moiety with a trigonal-bipyramidal topology of the [Cr2Yb3(μ-OOCCH3)6(μ-OH)6(H2O)6]3+ core, an isolated [CrIII(CN)6]3? anion, and four molecular neutral 4,4′-bipyridene (Bipy) ligands, namely, [Cr2Yb3(μ-OOCCH3)6(μ-OH)6(H2O)6][Cr(CN)6] · 4Bipy · 13H2O.  相似文献   

20.
Reaction of (μ-H)Os3(CO)10(μ-COMe) with 1,1'-bis(diphenylphosphino)-ferrocene (dppf) produces (μ-H)Os3(CO)8(μ-COMe){μ-η2-(η5-C5H4PPh2)2Fe} (1) and (μ-H)2Os3(CO)7(μ-COMe){μ-η3-(η5-C5H3PPh2)Fe(η5-C5H4PPh2)} (2). Thermolysis of 1 leads quantitatively to 2. These compounds have been characterized by 1H, 31P, and 13C NMR, IR, and mass spectroscopies. Compound 2 crystallizes in space group P 21/c with a = 11.898(2), b = 21.266(3), c = 18.262(3) Å, β = 104.71(1)°, V = 4469(1) Å3, Z = 4, and RF = 0.029.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号