首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the long-term behaviour of the parabolic evolution equation $\[u'(t)=A(t)u(t)+f(t), t>s,\quad u(s)=x. \]$\[u'(t)=A(t)u(t)+f(t), t>s,\quad u(s)=x. \] If A(t) A(t) converges to a sectorial operator A with s(A)?i \Bbb R = ? \sigma(A)\cap i \Bbb R =\emptyset as t?¥ t\to\infty , then the evolution family solving the homogeneous problem has exponential dichotomy. If also f(t)? f f(t)\to f_\infty , then the solution u converges to the 'stationary solution at infinity', i.e., limt?¥u(t) = -A\sp-1f=:u,        limt?¥u¢(t)=0,        limt?¥A(t)u(t)=Au. \lim_{t\to\infty}u(t)= -A\sp{-1}f_\infty=:u_\infty, \qquad \lim_{t\to\infty}u'(t)=0, \qquad \lim_{t\to\infty}A(t)u(t)=Au_\infty. .  相似文献   

2.
In this paper we present homogenization results for elliptic degenerate differential equations describing strongly anisotropic media. More precisely, we study the limit as e? 0 \epsilon \to 0 of the following Dirichlet problems with rapidly oscillating periodic coefficients:¶¶ . \cases {{ -div(\alpha(\frac{x}{\epsilon}}, \nabla u) A(\frac{x}{\epsilon}) \nabla u) = f(x) \in L^{\infty}(\Omega) \atop u = 0 su \eth\Omega\ } ¶¶where, p > 1,     a: \Bbb Rn ×\Bbb Rn ? \Bbb R,     a(y,x) ? áA(y)x,x?p/2-1, A ? Mn ×n(\Bbb R) p>1, \quad \alpha : \Bbb R^n \times \Bbb R^n \to \Bbb R, \quad \alpha(y,\xi) \approx \langle A(y)\xi,\xi \rangle ^{p/2-1}, A \in M^{n \times n}(\Bbb R) , A being a measurable periodic matrix such that At(x) = A(x) 3 0A^t(x) = A(x) \ge 0 almost everywhere.¶¶The anisotropy of the medium is described by the following structure hypothesis on the matrix A:¶¶l2/p(x) |x|2 £ áA(x)x,x? £ L 2/p(x) |x|2, \lambda^{2/p}(x) |\xi|^2 \leq \langle A(x)\xi,\xi \rangle \leq \Lambda ^{2/p}(x) |\xi|^2, ¶¶where the weight functions l \lambda and L \Lambda (satisfying suitable summability assumptions) can vanish or blow up, and can also be "moderately" different. The convergence to the homogenized problem is obtained by a classical compensated compactness argument, that had to be extended to two-weight Sobolev spaces.  相似文献   

3.
If the longitudinal line method is applied to the Cauchy problem ut = uxx, u(0, x) = u0(x) with a bounded function u0, one is led to a linear initial value problem v¢(t)=A v(t), v(0)=wv'(t)=A v(t),\, v(0)=w in l (\Bbb Z)l^\infty (\Bbb Z). Using Banach limit techniques we study the asymptotic behaviour of the solutions of these problems as t tends to infinity.  相似文献   

4.
Let X be a smooth algebraic surface, L ? Pic(X) L \in \textrm{Pic}(X) and H an ample divisor on X. Set MX,H(2; L, c2) the moduli space of rank 2, H-stable vector bundles F on X with det(F) = L and c2(F) = c2. In this paper, we show that the geometry of X and of MX,H(2; L, c2) are closely related. More precisely, we prove that for any ample divisor H on X and any L ? Pic(X) L \in \textrm{Pic}(X) , there exists n0 ? \mathbbZ n_0 \in \mathbb{Z} such that for all n0 \leqq c2 ? \mathbbZ n_0 \leqq c_2 \in \mathbb{Z} , MX,H(2; L, c2) is rational if and only if X is rational.  相似文献   

5.
We prove several results concerning arithmetic progressions in sets of integers. Suppose, for example, that a \alpha and b \beta are positive reals, that N is a large prime and that C,D í \Bbb Z/N\Bbb Z C,D \subseteq {\Bbb Z}/N{\Bbb Z} have sizes gN \gamma N and dN \delta N respectively. Then the sumset C + D contains an AP of length at least ec ?{log} N e^{c \sqrt{\rm log} N} , where c > 0 depends only on g \gamma and d \delta . In deriving these results we introduce the concept of hereditary non-uniformity (HNU) for subsets of \Bbb Z/N\Bbb Z {\Bbb Z}/N{\Bbb Z} , and prove a structural result for sets with this property.  相似文献   

6.
We show that a homogeneous elastic ice layer of finite thickness and infinite horizontal extension floating on the surface of a homogeneous water layer of finite depth possesses a countable unbounded set of of resonant frequencies. The water is assumed to be compressible, the viscous effects are neglected in the model. Responses of this water-ice system to spatially localized harmonic in time perturbations with the resonant frequencies grow at least as ?t\sqrt{t} in the two-dimensional (2-D) case and at least as lnt in the three-dimensional (3-D) case, when time t?¥.t\to\infty. The analysis is based on treating the 3-D linear stability problem by applying the Laplace-Fourier transform and reducing the consideration to the 2-D case. The dispersion relation for the 2-D problem D(k,w) = 0,{D}(k,\omega) = 0, obtained previously by Brevdo and Il'ichev [10], is treated analytically and also computed numerically. Here k is a wavenumber, and w\omega is a frequency. It is proved that the system D(k,w) = 0, Dk(k,w) = 0{D}(k,\omega) = 0, {D}_k(k,\omega) = 0 possesses a countable unbounded set of roots (k, w) = (0,wn), n ? \Bbb Z(k, \omega) = (0,\omega_n), n\in\Bbb Z with Im wn = 0.\rm{Im}\ \omega_n = 0. Then the analysis of Brevdo [6], [7], [8], [9], which showed the existence of resonances in a homogeneous elastic waveguide, is applied to show that similar resonances exist in the present water-ice model. We propose a resonant mechanism for ice-breaking. It is based on destabilizing the floating ice layer by applying localized harmonic perturbations, with a moderate amplitude and at a resonant frequency.  相似文献   

7.
Let W ì \Bbb Rn\Omega \subset {\Bbb R}^n be a smooth domain and let u ? C0(W).u \in C^0(\Omega ). A classical result of potential theory states that¶¶-òSr([`(x)]) u(x)ds(x)=u([`(x)])-\kern-5mm\int\limits _{S_{r}(\bar x)} u(x)d\sigma (x)=u(\bar x)¶¶for every [`(x)] ? W\bar x\in \Omega and r > 0r>0 if and only if¶¶Du=0 in W.\Delta u=0 \hbox { in } \Omega.¶¶Here -òSr([`(x)]) u(x)ds(x)-\kern-5mm\int\limits _{S_{r}(\bar x)} u(x)d\sigma (x) denotes the average of u on the sphere Sr([`(x)])S_r(\bar x) of center [`(x)]\bar x and radius r. Our main result, which is a "localized" version of the above result, states:¶¶Theorem. Let u ? W2,1(W)u\in W^{2,1}(\Omega ) and let x ? Wx\in \Omega be a Lebesgue point of Du\Delta u such that¶¶-òSr([`(x)]) u d s- a = o(r2)-\kern-5mm\int\limits _{S_{r}(\bar x)} u d \sigma - \alpha =o(r^2)¶¶for some a ? \Bbb R\alpha \in \Bbb R and all sufficiently small r > 0.r>0. Then¶¶Du(x)=0.\Delta u(x)=0.  相似文献   

8.
Let G be a reductive algebraic group defined over \Bbb Q {\Bbb Q} . Let P, P' be parabolic subgroups of G, defined over \Bbb Q {\Bbb Q} , and let _boxclose_boxclose, a_P') t \in W({\frak a}_{P}, {\frak a}_{P'}) . In this paper we study the intertwining operator MP¢|P(t,l), l ? \frak a*P,\Bbb C M_{P' \vert P}(t,\lambda),\,\lambda \in {\frak a}^*_{P,{\Bbb C}} , acting in corresponding spaces of automorphic forms. One of the main results states that each matrix coefficient of MP¢|P(t,l) M_{P' \vert P}(t,\lambda) is a meromorphic function of order £ n + 1 \le n + 1 , where n = dim G. Using this result, we further investigate the rank one intertwining operators, in particular, we study the distribution of their poles.  相似文献   

9.
We give an elementary argument for the well known fact that the endomorphism algebra End(A)?\Bbb Q {\rm {End}}(A)\otimes {\Bbb Q } of a simple complex abelian surface A can neither be an imaginary quadratic field nor a definite quaternion algebra. Another consequence of our argument is that a two-dimensional complex torus T with \Bbb Q (?d)\hookrightarrow End\Bbb Q (T){\Bbb Q }(\sqrt {d})\hookrightarrow {\rm{End_{{\Bbb Q }}}}(T) where \Bbb Q (?d){\Bbb Q }(\sqrt {d}) is real quadratic, is algebraic.  相似文献   

10.
Let (M,g) be a connected compact manifold, C3 smooth and without boundary, equipped with a Riemannian distance d(x,y). If s : M ? M s : M \to M is merely Borel and never maps positive volume into zero volume, we show s = t °u s = t \circ u factors uniquely a.e. into the composition of a map t(x) = expx[-?y(x)] t(x) = {\rm exp}_x[-\nabla\psi(x)] and a volume-preserving map u : M ? M u : M \to M , where y: M ? \bold R \psi : M \to {\bold R} satisfies the additional property that (yc)c = y (\psi^c)^c = \psi with yc(y) :=inf{c(x,y) - y(x) | x ? M} \psi^c(y) :={\rm inf}\{c(x,y) - \psi(x)\,\vert\,x \in M\} and c(x,y) = d2(x,y)/2. Like the factorization it generalizes from Euclidean space, this non-linear decomposition can be linearized around the identity to yield the Hodge decomposition of vector fields.¶The results are obtained by solving a Riemannian version of the Monge--Kantorovich problem, which means minimizing the expected value of the cost c(x,y) for transporting one distribution f 3 0 f \ge 0 of mass in L1(M) onto another. Parallel results for other strictly convex cost functions c(x,y) 3 0 c(x,y) \ge 0 of the Riemannian distance on non-compact manifolds are briefly discussed.  相似文献   

11.
In [C.K. Chui and X.L. Shi, Inequalities of Littlewood-Paley type for frames and wavelets, SIAM J. Math. Anal., 24 (1993), 263–277], the authors proved that if {eimbxg(x-na): m,n ? \Bbb Z}\{e^{imbx}g(x-na): m,n\in{\Bbb Z}\} is a Gabor frame for L2(\Bbb R)L^2({\Bbb R}) with frame bounds A and B, then the following two inequalities hold: A £ \frac2pb?n ? \Bbb Z|g(x-na)|2B,     a.e.A\le \frac{2\pi}{b}\sum_{n\in{\Bbb Z}}\vert g(x-na)\vert^2\le B, \quad a.e. and A £ \frac1a?m ? \Bbb Z|[^(g)](w-mb)|2B,     a.e.A\le \frac{1}{a}\sum_{m\in{\Bbb Z}}\vert \hat{g}(\omega-mb)\vert^2\le B, \quad a.e. . In this paper, we show that similar inequalities hold for multi-generated irregular Gabor frames of the form è1 £ kr{eiáx, l?gk(x-m): m ? Dk, l ? Lk }\bigcup_{1\le k\le r}\{e^{i\langle x, \lambda\rangle}g_{k}(x-\mu):\, \mu\in \Delta_k, \lambda\in\Lambda_k \} , where Δ k and Λ k are arbitrary sequences of points in \Bbb Rd{\Bbb R}^d and gk ? L2(\Bbb Rd)g_k\in{L^2{(\Bbb R}^d)} , 1 ≤ kr.  相似文献   

12.
Let B\cal B be a p-block of cyclic defect of a Hecke order over the complete ring \Bbb Z[q] áq-1,p ?\Bbb {Z}[q] _{\langle q-1,p \rangle}; i.e. modulo áq-1 ?\langle q-1 \rangle it is a p-block B of cyclic defect of the underlying Coxeter group G. Then B\cal B is a tree order over \Bbb Z[q]áq-1, p ?\Bbb {Z}[q]_{\langle q-1, p \rangle } to the Brauer tree of B. Moreover, in case B\cal B is the principal block of the Hecke order of the symmetric group S(p) on p elements, then B\cal B can be described explicitly. In this case a complete set of non-isomorphic indecomposable Cohen-Macaulay B\cal B-modules is given.  相似文献   

13.
The complex group algebra \Bbb CG{\Bbb C}G of a countable group G can be imbedded in the von Neumann algebra NG of G. If G is torsion-free, and if P is a finitely generated projective module over \Bbb CG{\Bbb C}G it is proved that the central-valued trace of NG?\Bbb CGPNG\otimes _{{\Bbb C}G}P, i.e. of an idempotent \Bbb CG{\Bbb C}G-matrix A defining P is equal to the canonical trace k(P)\kappa (P) times identity I. It follows that k(P)\kappa (P) characterizes the isomorphism type of NG?\Bbb CGPNG\otimes _{{\Bbb C}G}P.¶If k(P)\kappa (P) is an integer, e.g., if the weak Bass conjecture holds for G then NG?\Bbb C GPNG\otimes _{{\Bbb C} G}P is free. It is also shown that for certain classes of groups geometric arguments can be used to prove the Bass conjecture.  相似文献   

14.
It is an open problem whether an infinite-dimensional amenable Banach algebra exists whose underlying Banach space is reflexive. We give sufficient conditions for a reflexive, amenable Banach algebra to be finite-dimensional (and thus a finite direct sum of full matrix algebras). If \frak A {\frak A} is a reflexive, amenable Banach algebra such that for each maximal left ideal L of \frak A {\frak A} (i) the quotient \frak A/L {\frak A}/L has the approximation property and (ii) the canonical map from \frak A \check? L^ {\frak A} \check{\otimes} L^\perp to (\frak A / L) \check? L^ ({\frak A} / L) \check{\otimes} L^\perp is open, then \frak A {\frak A} is finite-dimensional. As an application, we show that, if \frak A {\frak A} is an amenable Banach algebra whose underlying Banach space is an \scr Lp {\scr L}^p -space with p ? (1,¥) p\in (1,\infty) such that for each maximal left ideal L the quotient \frak A/L {\frak A}/L has the approximation property, then \frak A {\frak A} is finite-dimensional.  相似文献   

15.
We prove that every symplectic Kähler manifold (M;W) (M;\Omega) with integral [W] [\Omega] decomposes into a disjoint union (M,W) = (E,w0) \coprod D (M,\Omega) = (E,\omega_0) \coprod \Delta , where (E,w0) (E,\omega_0) is a disc bundle endowed with a standard symplectic form w0 \omega_0 and D \Delta is an isotropic CW-complex. We perform explicit computations of this decomposition on several examples.¶As an application we establish the following symplectic intersection phenomenon: There exist symplectically irremovable intersections between contractible domains and Lagrangian submanifolds. For example, we prove that every symplectic embedding j:B2n(l) ? \Bbb CPn \varphi:B^{2n}(\lambda) \to {\Bbb C}P^n of a ball of radius l2 3 1/2 \lambda^2 \ge 1/2 must intersect the standard Lagrangian real projective space \Bbb RPn ì \Bbb CPn {\Bbb R}P^n \subset {\Bbb C}P^n .  相似文献   

16.
We introduce the dimension monoid of a lattice L, denoted by Dim L. The monoid Dim L is commutative and conical, the latter meaning that the sum of any two nonzero elements is nonzero. Furthermore, Dim L is given along with the dimension map, D\Delta from L2L to Dim L, which has the intuitive meaning of a distance function. The maximal semilattice quotient of Dim L is isomorphic to the semilattice Conc L of compact congruences of L; hence Dim L is a precursor of the congruence lattice of L. Here are some additional features of this construction: ¶¶ (1) Our dimension theory provides a generalization to all lattices of the von Neumann dimension theory of continuous geometries. In particular, if L is an irreducible continuous geometry, then Dim L is either isomorphic to \Bbb Z+\Bbb Z^+ or to \Bbb R+\Bbb R^+.¶ (2) If L has no infinite bounded chains, then Dim L embeds (as an ordered monoid) into a power of \Bbb Z+è{¥}.{\Bbb Z}^{+}\cup \{\infty\}.¶ (3) If L is modular or if L has no infinite bounded chains, then Dim L is a refinement monoid.¶ (4) If L is a simple geometric lattice, then Dim L is isomorphic to \Bbb Z+\Bbb Z^+, if L is modular, and to the two-element semilattice, otherwise.¶ (5) If L is an à0\aleph_0-meet-continuous complemented modular lattice, then both Dim L and the dimension function D\Delta satisfy (countable) completeness properties.¶¶ If R is a von Neumann regular ring and if L is the lattice of principal right ideals of the matrix ring M2 (R), then Dim L is isomorphic to the monoid V (R) of isomorphism classes of finitely generated projective right R-modules. Hence the dimension theory of lattices provides a wide lattice-theoretical generalization of nonstable K-theory of regular rings.  相似文献   

17.
Let Ln denote the n-th homogeneous component of the free Lie ring L(W) on a given \Bbb ZC2{{\Bbb Z}}C_{2}-lattice W. This paper gives explicit formulae for the multiplicities of the three indecomposable \Bbb ZC2{{\Bbb Z}}C_{2}-lattices in a Krull-Schmidt decomposition of Ln. In the case where W is a free \Bbb ZC2{{\Bbb Z}}C_{2}-lattice, Ln is shown to have no non-zero direct summand on which C2 acts trivially - this extends a result of R. M. Bryant for the special case where W is the regular \Bbb ZC2{{\Bbb Z}}C_{2}-lattice. As an application, the structure of the higher dimensional modules associated to a non-cyclic free presentation of C2 is determined.  相似文献   

18.
Given a Hilbert space (H,á·,·?){(\mathcal H,\langle\cdot,\cdot\rangle)}, and interval L ì (0,+¥){\Lambda\subset(0,+\infty)} and a map K ? C2(H,\mathbb R){K\in C^2(\mathcal H,\mathbb R)} whose gradient is a compact mapping, we consider the family of functionals of the type:
I(l,u)=\dfrac12áu,u?-lK(u),    (l,u) ? L×H.I(\lambda,u)=\dfrac12\langle u,u\rangle-\lambda K(u),\quad (\lambda,u)\in\Lambda\times\mathcal H.  相似文献   

19.
The algebra Bp(\Bbb R){\cal B}_p({\Bbb R}), p ? (1,¥)\{2}p\in (1,\infty )\setminus \{2\}, consisting of all measurable sets in \Bbb R{\Bbb R} whose characteristic function is a Fourier p-multiplier, forms an algebra of sets containing many interesting and non-trivial elements (e.g. all intervals and their finite unions, certain periodic sets, arbitrary countable unions of dyadic intervals, etc.). However, Bp(\Bbb R){\cal B}_p({\Bbb R}) fails to be a s\sigma -algebra. It has been shown by V. Lebedev and A. Olevskii [4] that if E ? Bp(\Bbb R)E\in {\cal B}_p({\Bbb R}), then E must coincide a.e. with an open set, a remarkable topological constraint on E. In this note we show if $2 < p < \infty $2 < p < \infty , then there exists E ? Bp(\Bbb R)E\in {\cal B}_p({\Bbb R}) which is not in Bq(\Bbb R){\cal B}_q({\Bbb R}) for any q > pq>p.  相似文献   

20.
Let f ? C(\Bbb Rn,\Bbb Rn) f\in C(\Bbb R^n,\Bbb R^n) be quasimonotone increasing such that Y(f(y)-f(x)) £ -c Y(y-x) (x << y) \Psi (f(y)-f(x)) \!\le -c \Psi (y-x) (x\ll y) for a linear and strictly positive functional Y \Psi and c > 0. We prove that f is a homeomorphism with decreasing and Lipschitz continuous inverse and we prove the global asymptotic stability of the equilibrium solution of x¢=f(x) x'=f(x) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号