首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structures of the transition states and the activation energies were determined. Calculations with and without dipole correction were both studied to get an understanding of the effect of the dipole moment on the adsorption and reaction of water on dipole surface Cu2O(100). When dipole correction was added, the adsorption energies of H2O on different sites generally decreased. The calculated activation barriers for HxO (x = 1, 2) dehydrogenation are 0.42 eV (1.01 eV without the dipole correction) and 1.86 eV, respectively, including the zero point energy correction. The first dehydrogenation outcome is energetically the most stable product.  相似文献   

2.
Three malonato-bridged copper(II) complexes of the formulas [[Cu(H2O)3][Cu(C3H2O4)2(H2O)]]n (1), [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]] [Cu(C3H2O4)2(H2O)2][[Cu(H2O)4][Cu(C3H2O4)2(H2O)2]] (2), and [Cu(H2O)4][Cu(C3H2O4)2(H2O)2] (3) (C3H2O4 = malonate dianion) have been prepared, and the structures of the two former have been solved by X-ray diffraction methods. The structure of compound 3 was already known. Complex 1 crystallizes in the orthorhombic space group Pcab, Z = 8, with unit cell parameters of a = 10.339(1) A, b = 13.222(2) A, and c = 17.394(4) A. Complex 2 crystallizes in the monoclinic space group P2/c, Z = 4, with unit cell parameters of a = 21.100(4) A, b = 21.088(4) A, c = 14.007(2) A, and beta = 115.93(2) degrees. Complex 1 is a chain compound with a regular alternation of aquabis(malonato)copper(II) and triaquacopper(II) units developing along the z axis. The aquabis(malonato)copper(II) unit acts as a bridging ligand through two slightly different trans-carboxylato groups exhibiting an anti-syn coordination mode. The four carboxylate oxygens, in the basal plane, and the one water molecule, in the apical position, describe a distorted square pyramid around Cu1, whereas the same metal surroundings are observed around Cu2 but with three water molecules and one carboxylate oxygen building the equatorial plane and a carboxylate oxygen from another malonato filling the apical site. Complex 2 is made up of discrete mono-, di-, and trinuclear copper(II) complexes of the formulas [Cu(C3H2O4)2(H2O)2]2-, [[Cu(H2O)4] [Cu(C3H2O4)2(H2O)2]], and [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]]2+, respectively, which coexist in a single crystal. The copper environment in the mononuclear unit is that of an elongated octahedron with four carboxylate oxygens building the equatorial plane and two water molecules assuming the axial positions. The neutral dinuclear unit contains two types of copper atoms, one that is six-coordinated, as in the mononuclear entity, and another that is distorted square pyramidal with four water molecules building the basal plane and a carboxylate oxygen in the apical position. The overall structure of this dinuclear entity is nearly identical to that of compound 3. Finally, the cationic trimer consists of an aquabis(malonato)copper(II) complex that acts as a bismonodentate ligand through two cis-carboxylato groups (anti-syn coordination mode) toward two tetraaqua-copper(II) terminal units. The environment of the copper atoms is distorted square pyramidal with four carboxylate oxygens (four water molecules) building the basal plane of the central (terminal) copper atom and a water molecule (a carboxylate oxygen) filling the axial position. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-290 K. Overall, ferromagnetic behavior is observed in the three cases: two weak, alternating intrachain ferromagnetic interactions (J = 3.0 cm-1 and alpha J = 1.9 cm-1 with H = -J sigma i[S2i.S2i-1 + alpha S2i.S2i+1]) occur in 1, whereas the magnetic behavior of 2 is the sum of a magnetically isolated spin doublet and ferromagnetically coupled di- (J3 = 1.8 cm-1 from the magnetic study of the model complex 3) and trinuclear (J = 1.2 cm-1 with H = -J (S1.S2 + S1.S3) copper(II) units. The exchange pathway that accounts for the ferromagnetic coupling, through an anti-syn carboxylato bridge, is discussed in the light of the available magneto-structural data.  相似文献   

3.
The short-time nuclear dynamics of Cu(H(2)O) is investigated using femtosecond photodetachment-photoionization spectroscopy and time-dependent quantum wave packet calculations. The Cu(H(2)O) dynamics is initiated in the electronic ground state of the complex by electron photodetachment from the Cu(-)(H(2)O) complex, where hydrogen atoms are oriented toward Cu. Several time-resolved resonant multiphoton ionization schemes are used to probe the ensuing reorientation and dissociation. Immediately following photodetachment, the neutral complex is far from its minimum energy geometry and possesses an internal energy comparable to the Cu-H(2)O dissociation energy and undergoes both large-amplitude H(2)O motion and dissociation. Dissociation is observed to occur on three distinct time scales: 0.6, 8, and 100 ps. These results are compared to the results of time-dependent J=0 wave packet calculations, propagating the initial anion vibrational wave functions on the ground-state potential of the neutral complex. An excellent agreement is obtained between the experimental results and the ionization signals derived from the calculated probability amplitudes. Related experiments and calculations are carried out on the Cu(D(2)O) complex, with results very similar to those of Cu(H(2)O).  相似文献   

4.
The H-bond interaction between glycine and H2O has been studied by a combined theoretical (DFT(B3LYP)/6-31++G(**)) and experimental (matrix-isolation FT-IR) methodology. The 1:1 and 1:2 complexes of the most stable conformation (I) of glycine appear to be neutral complexes which have been vibrationally characterized in detail. The higher stoichiometry complexes (glycine).(H2O)n with n larger than 3 are demonstrated to be zwitterionic H-bonded complexes. A set of characteristic IR absorption bands for this zwitterionic structure has been observed in low-temperature Ar matrices. This would be the first experimental IR evidence for proton transfer occurring between the NH2 and COOH groups of amino acids by a H-bonded water molecular channel in isolated conditions.  相似文献   

5.
High-level ab initio calculations were carried out on a series of K+.X cluster ions (X = O, O2, N2, CO2, H2O) and X.K+.Y ions. Rice-Ramsberger-Kassel-Markus theory was then used to estimate the rate coefficients for a series of recombination and ligand-switching reactions that govern the ion-molecule chemistry of K+ in the upper mesosphere and lower thermosphere. These rate coefficients were then included in an atmospheric model of potassium chemistry. The important result is that K+ forms weakly bound clusters with N2, O2, and O (the major atmospheric species), with binding energies between 10 and 22 kJ mol(-1). Even under atmospheric conditions (200 K and 10(-3) Torr), these cluster dissociate in less than 1 s. This prevents the formation by ligand-switching of the more stable CO2 and H2O clusters, which could then undergo dissociative recombination with electrons to produce K. The result is that K+ ions have a much longer lifetime against neutralization in the upper atmosphere than other metallic ions such as Na+ and Fe+.  相似文献   

6.
First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.  相似文献   

7.
In the paper a joint experimental and theoretical study of 3,5-dimethyl-1H-pyrazole-1-carboxamidine (L) as well as its complexes CoL2(H2O)2(NO3)2 and NiL2(H2O)2(NO3)2 is reported. On the basis of FT-IR experiments and a DFT-derived scaled quantum mechanical force field the normal coordinate analysis of L was carried out. The FT-IR spectra of the two complexes were interpreted using the present assignment of L and computed vibrational data of the complexes. The ionic and charge transfer interactions in the complexes were assessed by means of natural bond orbital (NBO) analysis.  相似文献   

8.
We report studies of supersonically cooled water complexes of m-aminobenzoic acid MABA.(H(2)O)n (n = 1 and 2) using two-color resonantly enhanced multiphoton ionization (REMPI) and UV-UV hole-burning spectroscopy. Density functional theory calculations are also carried out to identify structural minima of water complexes in the ground state. For the most stable isomers of both complexes, water molecules bind to the pocket of the carboxyl group in a cyclic hydrogen bond network. Vibrational frequency calculations for the first electronically excited state (S(1)) of these isomers agree well with the experimental observation. The addition of water molecules has a major impact on the normal mode that involves local motion of the carboxyl group, while negligible effects are observed for other normal modes. On the basis of the hole-burning experiment, two major isomers for each complex are identified, corresponding to the two conformers of the bare compound. Compared with the other two isomers of aminobenzoic acid, the red shifts of the origin bands due to water complexation in MABA are considerably larger. Similar to p-aminobenzoic acid and different from o-aminobenzoic acid, the existence of the intermolecular stretching mode is ambiguous in the REMPI spectrum of MABA.(H(2)O)n.  相似文献   

9.
The deviation of the NH(2) pseudo-first-order decay Arrhenius plots of the NH(2) + O(3) reaction at high ozone pressures measured by experimentalists, has been attributed to the regeneration of NH(2) radicals due to the subsequent reactions of the products of this reaction with ozone. Although these products have not yet been characterized experimentally, the radical H(2)NO has been postulated, because it can regenerate NH(2) radicals through the reactions: H(2)NO + O(3) --> NH(2) + O(2) and H(2)NO + O(3) --> HNO + OH + O(2). With the purpose of providing a reasonable explanation from a theoretical point of view to the kinetic observed behaviour of the NH(2) + O(3) system, we have carried ab initio electronic structure calculations on both H(2)NO + O(3) possible reactions. The results obtained in this article, however, predict that of both reactions proposed, only the H(2)NO + O(3) --> NH(2) + O(2) reaction would regenerate indeed NH(2) radicals, explaining thus the deviation of the NH(2) pseudo-first-order decay observed experimentally.  相似文献   

10.
In support of mass-selected infrared photodissociation (IRPD) spectroscopy experiments, coupled-cluster methods including all single and double excitations (CCSD) and a perturbative contribution from connected triple excitations [CCSD(T)] have been used to study the V+(H2O) and ArV+(H2O) complexes. Equilibrium geometries, harmonic vibrational frequencies, and dissociation energies were computed for the four lowest-lying quintet states (5A1, 5A2, 5B1, and 5B2), all of which appear within a 6 kcal mol(-1) energy range. Moreover, anharmonic vibrational analyses with complete quartic force fields were executed for the 5A1 states of V+(H2O) and ArV+(H2O). Two different basis sets were used: a Wachters+f V[8s6p4d1f] basis with triple-zeta plus polarization (TZP) for O, H, and Ar; and an Ahlrichs QZVPP V[11s6p5d3f2g] and Ar[9s6p4d2f1g] basis with aug-cc-pVQZ for O and H. The ground state is predicted to be 5A1 for V+(H2O), but argon tagging changes the lowest-lying state to 5B1 for ArV+(H2O). Our computations show an opening of 2 degrees -3 degrees in the equilibrium bond angle of H2O due to its interaction with the metal ion. Zero-point vibrational averaging increases the effective bond angle further by 2.0 degrees -2.5 degrees, mostly because of off-axis motion of the heavy vanadium atom rather than changes in the water bending potential. The total theoretical shift in the bond angle of about +4 degrees is significantly less than the widening near 9 degrees deduced from IRPD experiments. The binding energies (D0) for the successive addition of H2O and Ar to the vanadium cation are 36.2 and 9.4 kcal mol(-1), respectively.  相似文献   

11.
A spectroscopic and computational study of a series of 2,5-bis(2-thien-2-ylethenyl) thiophene-based oligomers with a para-R-arylethenyl substituent is reported. The primary aim of this investigation is to increase understanding of how charge moves through these molecules by comparing the neutral and oxidized structures for each molecule. To this end, the B3LYP/6-31G(d) computational method was used to calculate the geometry and vibrational spectra for all molecules considered and their oxidation products. For vibrational data, mean absolute deviations for frequencies between experimental and theoretical results ranging from 2 to 18 cm-1 were obtained. Experimental Raman spectroscopy, in conjunction with calculated bond length analyses, was used to gain an insight into the position and delocalization of the charged defect on the oxidized oligomers. The relative frequencies of different ethylene stretching modes served as a particularly useful probe in this regard. It was found that the ethenyl spacers do not impede pi-electron delocalization and, therefore, give rise to a longer conjugation length relative to the corresponding terthiophenes. Furthermore, the para-R-arylethenyl substituent was found to orientate the charged defect toward a specific region of the 2,5-bis(2-thien-2-ylethenyl)thiophene conjugation path.  相似文献   

12.
13.
The combination of CH(3)CN solutions of [N(CH(3))(4)][F] and a mixture of cis- and trans-[N(CH(3))(4)][IO(2)F(4)] produces the novel trans-IO(2)F(5)(2)(-) anion. Under the given conditions, only the trans-IO(2)F(4)(-) anion acts as a fluoride ion acceptor, thus allowing the separation of isomerically pure, soluble cis-IO(2)F(4)(-) from insoluble trans-IO(2)F(5)(2)(-). The trans-IO(2)F(5)(2)(-) and cis-IO(2)F(4)(-) anions were characterized by infrared and Raman spectroscopy and theoretical calculations at the LDFT and HF levels of theory. The trans-IO(2)F(5)(2)(-) anion has a pentagonal-bipyramidal geometry with the two oxygen atoms occupying the axial positions. It represents the first example of a heptacoordinated main group AO(2)X(5) species and completes the series of pentagonal-bipyramidal iodine fluoride and oxide fluoride species. The geometries of the pentagonal-bipyramidal series IO(2)F(5)(2)(-), IOF(5)(2)(-), IF(5)(2)(-), IOF(6)(-), IF(6)(-), and IF(7) and the corresponding octahedral series IO(2)F(4)(-), IOF(4)(-), IF(4)(-), IOF(5), IF(5), and IF(6)(+) were calculated by identical methods. It is shown how the ionic charge, the oxidation state of the iodine atom, the coordination number, and the replacement of fluorine ligands by either an oxygen ligand or a free valence electron pair influence the stuctures and bonding of these species.  相似文献   

14.
15.
16.
The ultrafast relaxation dynamics of Cu(H(2)O)(2) is investigated using femtosecond photodetachment-photoionization spectroscopy. In addition, stationary points on the Cu(H(2)O)(2) anion, neutral, and cation potential energy surfaces are characterized by ab initio electronic structure calculations. Electron photodetachment from Cu(-)(H(2)O)(2) initiates the dynamics on the ground-state potential energy surface of neutral Cu(H(2)O)(2). The resulting Cu(H(2)O)(2) complexes experience large-amplitude H(2)O reorientation and dissociation. The time evolution of the Cu(H(2)O)(2) fragmentation products is monitored by time-resolved resonant multiphoton ionization. The parent ion, Cu(+)(H(2)O)(2), is not detected above background levels. The rise to a maximum of the Cu(+) signal from Cu(-)(H(2)O)(2), and the decay of the Cu(+)(H(2)O) signal from Cu(-)(H(2)O)(2) have similar tau approximately 10 ps time dependences to the corresponding signals from Cu(-)(H(2)O), but display clear differences at very short and long times. The experimental observations can be understood in terms of the following picture. Prompt dissociation of H(2)O from nascent Cu(H(2)O)(2) gives rise to a vibrationally excited Cu(H(2)O) complex, which dissociates to Cu+H(2)O due to coupling of H(2)O internal rotation to the dissociation coordinate. This prompt dissociation removes all intra-H(2)O vibrational excitation from the intermediate Cu(H(2)O) fragment, which quenches the long time vibrational predissociation to Cu+H(2)O previously observed in analogous experiments on Cu(-)(H(2)O).  相似文献   

17.
铜是生物体内必需的微量元素,是一些重要酶的活性中心,其配合物在生命体系有着特殊的生物活性和催化作用[1,2]。铜的配合物由于具有特殊的磁  相似文献   

18.
This paper describes a systematic study on the clathrate structure of (H+)(H2O)21 using tandem mass spectrometry, vibrational predissociation spectroscopy, Monte Carlo simulations, and density functional theory calculations. We produced (H+)(H2O)n from a continuous corona-discharged supersonic expansion and observed three anomalies simultaneously at the cluster temperature near 150 K, including (1) the peak at n=21 is more intense than its neighboring ions in the mass spectrum, (2) the size-dependent dissociation fractions show a distinct drop for the 21-mer, and (3) the infrared spectrum of (H+)(H2O)21 exhibits only a single feature at 3699 cm(-1), corresponding to the free-OH stretching of three-coordinated water molecules. Interestingly, the anomalies appear or disappear together with cluster temperature, indicating close correlation of these three observations. The observations, together with Monte Carlo simulations and density functional theory calculations, corroborate the notion for the formation of a distorted pentagonal dodecahedral (5(12)) cage with a H2O molecule in the cage and a H3O+ ion on the surface for this "magic number" water cluster ion. The dodecahedral cage melts at higher temperatures, as evidenced by the emergence of a free-OH stretching feature at 3717 cm(-1) for the two-coordinated water in (H+)(H2O)21 produced in a warmer molecular beam. Extension of this study to larger clusters strongly suggests that the experimentally observed isomer of (H+)(H2O)28 is most likely to consist of a distorted protonated pentakaidecahedral (5(12)6(3)) cage enclosing two neutral water molecules.  相似文献   

19.
Mechanisms for the deamination reaction of cytosine with H 2O/OH (-) and 2H 2O/OH (-) to produce uracil were investigated using ab initio calculations. Optimized geometries of reactants, transition states, intermediates, and products were determined at MP2 and B3LYP using the 6-31G(d) basis set and at B3LYP/6-31+G(d) levels of theory. Single point energies were also determined at MP2/G3MP2Large and G3MP2 levels of theory. Thermodynamic properties (Delta E, Delta H, and Delta G), activation energies, enthalpies, and free energies of activation were calculated for each reaction pathway investigated. Intrinsic reaction coordinate (IRC) analysis was performed to characterize the transition states on the potential energy surface. Seven pathways for the deamination reaction were found. All pathways produce an initial tetrahedral intermediate followed by several conformational changes. The final intermediate for all pathways dissociates to product via a 1-3 proton shift. The activation energy for the rate-determining step, the formation of the tetrahedral intermediate for pathway D, the only pathway that can lead to uracil, is 115.3 kJ mol (-1) at the G3MP2 level of theory, in excellent agreement with the experimental value (117 +/- 4 kJ mol (-1)).  相似文献   

20.
Insertion of CO2 into the transition metal-hydride bond of [RhIIIH2(PH3)3]+, CuIH(PH3)2, and RhIH(PH3)3 was theoretically investigated with ab initio MO/MP 4, SD-CI , and CCD methods. The geometries of reactants, transition states (TS ), and products were optimized at the Hartree-Fock level, and then MP 4, SD-CI , and CCD calculations were performed on those optimized structures. The TS of the CO2 insertion into the CuI(bond)H bond is the most reactantlike, while the TS of the CO2 insertion into the RhIII(bond)H bond is the most productlike. The activation energy (Ea) and the reaction energy (ΔE) were calculated to be 6.5 and −33.5 kcal/mol for the CO2 insertion into the Cu1(bond)H bond, 21.2 and −7.0 kcal/mol for the CO2 insertion into the Rh1(bond)H bond, and 51.3 and −1.1 kcal/mol for the Rh111(bond)H bond at the SD-CI level, where negative ΔE represents exothermicity. These results are discussed in terms of the M(bond)H bond energy and the trans-influence of the hydride ligand. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号