首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The purpose of the present study was to determine the effect of primary-tone level variation, L2--L1, on the amplitude of distortion-product otoacoustic emissions (DPOAEs). The DPOAE at the frequency 2f1--f2 (f2 greater than f1) was measured in 20 ears of ten normally hearing subjects. Acoustic distortion products were generated by primaries f1 and f2 with geometric mean frequencies of 1, 2, and 4 kHz. The f2/f1 ratios were 1.25 (1 kHz), 1.23 (2 kHz), and 1.21 (4 kHz). The primary-tone level L1 was kept constant at either 65 or 75 dB SPL while the second primary-tone level L2 was varied between 20 and 90 dB SPL in 5-dB steps. The level differences L2--L1 generating maximal DPOAE amplitudes depended on L1 and on the geometric mean frequency of f1 and f2. There were large interindividual differences. Overall, the L2--L1 evoking maximal mean DPOAE amplitudes was --10 dB for geometric mean frequencies of 1 and 2 kHz with both L1 = 65 dB SPL and L1 = 75 dB SPL. For 4 kHz, L2-L1 was --5 dB with L1 = 65 dB SPL and 0 dB with L1 = 75 dB SPL. The mean slopes of the DPOAE growth functions in the initial linearly increasing portions were steeper at higher stimulus frequencies, increasing from 0.52 at 1 kHz to 0.72 at 4 kHz for L1 = 65 dB SPL and from 0.48 at 1 kHz to 0.72 at 4 kHz for L1 = 75 dB SPL.  相似文献   

2.
Evidence of the compressive growth of basilar-membrane displacement can be seen in distortion-product otoacoustic emission (DPOAE) levels measured as a function of stimulus level. When the levels of the two stimulus tones (f1 and f2) are related by the formula L1 = 39 dB + 0.4 x L2 [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] the shape of the function relating DPOAE level to L2 is similar (up to an L2 of 70 dB SPL) to the classic Fletcher and Munson [J. Acoust. Soc. Am. 9, 1-10 (1933)] loudness function when plotted on a logarithmic scale. Explicit estimates of compression have been derived based on recent DPOAE measurements from the laboratory. If DPOAE growth rate is defined as the slope of the DPOAE I/O function (in dB/dB), then a cogent definition of compression is the reciprocal of the growth rate. In humans with normal hearing, compression varies from about 1 at threshold to about 4 at 70 dB SPL. With hearing loss, compression is still about 1 at threshold, but grows more slowly above threshold. Median DPOAE I/O data from ears with normal hearing, mild loss, and moderate loss are each well fit by log functions. When the I/O function is logarithmic, then the corresponding compression is a linear function of stimulus level. Evidence of cochlear compression also exists in DPOAE suppression tuning curves, which indicate the level of a third stimulus tone (f3) that reduces DPOAE level by 3 dB. All three stimulus tones generate compressive growth within the cochlea; however, only the relative compression (RC) of the primary and suppressor responses is observable in DPOAE suppression data. An RC value of 1 indicates that the cochlear responses to the primary and suppressor components grow at the same rate. In normal ears, RC rises to 4, when f3 is an octave below f2. The similarities between DPOAE and loudness compression estimates suggest the possibility of predicting loudness growth from DPOAEs; however, intersubject variability makes such predictions difficult at this time.  相似文献   

3.
Transient-evoked stimulus-frequency otoacoustic emissions (SFOAEs), recorded using a nonlinear differential technique, and distortion-product otoacoustic emissions (DPOAEs) were measured in 17 normal-hearing and 10 hearing-impaired subjects using pairs of tone pips (pp), gated tones (gg), and for DPOAEs, continuous and gated tones (cg). Temporal envelopes of stimulus and OAE waveforms were obtained by narrow-band filtering at the stimulus or DP frequency. Mean SFOAE latencies in normal ears at 2.7 and 4.0 kHz decreased with increasing stimulus level and were larger at 4.0 kHz than latencies in impaired ears. Equivalent auditory filter bandwidths were calculated as a function of stimulus level from SFOAE latencies by assuming that cochlear transmission is minimum phase. DPOAE latencies varied less with level than SFOAE latencies. The ppDPOAEs often had two (or more) peaks separated in time with latencies consistent with model predictions for distortion and reflection components. Changes in ppDPOAE latency with level were sometimes explained by a shift in relative amplitudes of distortion and reflection components. The pp SFOAE SPL within the main spectral lobe of the pip stimulus was higher for normal ears in the higher-frequency half of the pip than the lower-frequency half, which is likely an effect of basilar membrane two-tone suppression.  相似文献   

4.
Input-output (I/O) functions for stimulus-frequency (SFOAE) and distortion-product (DPOAE) otoacoustic emissions were recorded in 30 normal-hearing adult ears using a nonlinear residual method. SFOAEs were recorded at half octaves from 500-8000 Hz in an L1=L2 paradigm with L2=0 to 85 dB SPL, and in a paradigm with L1 fixed and L2 varied. DPOAEs were elicited with primary levels of Kummer et al. [J. Acoust. Soc. Am. 103, 3431-3444 (1998)] at f2 frequencies of 2000 and 4000 Hz. Interpretable SFOAE responses were obtained from 1000-6000 Hz in the equal-level paradigm. SFOAE levels were larger than DPOAEs levels, signal-to-noise ratios were smaller, and I/O functions were less compressive. A two-slope model of SFOAE I/O functions predicted the low-level round-trip attenuation, the breakpoint between linearity and compression, and compressive slope. In ear but not coupler recordings, the noise at the SFOAE frequency increased with increasing level (above 60 dB SPL), whereas noise at adjacent frequencies did not. This suggests the existence of a source of signal-dependent noise producing cochlear variability, which is predicted to influence basilar-membrane motion and neural responses. A repeatable pattern of notched SFOAE I/O functions was present in some ears, and explained using a two-source mechanism of SFOAE generation.  相似文献   

5.
The results of studies of the physiological vulnerability of distortion-product otoacoustic emissions (DPOAEs) suggest that the DPOAE at 2f1-f2 in vertebrate ears is generated by more than one source. The principal aims of the present study were to provide independent evidence for the existence of more than one DPOAE source, and to determine the contributions of each to the ear-canal 2f1-f2 signal. To accomplish these aims, specific stimulus parameters were separately and systematically varied to provide detailed parametric information regarding 2f1-f2 DPOAE amplitude and phase in normal ears of awake rabbits. The findings indicate that two discrete sources, demonstrating differential dependence on stimulus parameters, dominate the generation of the 2f1-f2 DPOAE. One source of distortion is dominant above 60-70 dB SPL at moderate primary-frequency separations, and at all stimulus levels when the primary tones are closely spaced. The other source is dominant below 60-70 dB SPL at moderate primary-frequency separations, and may be dominant at all stimulus levels when the primary tones are widely separated in frequency. The results suggest that by varying stimulus parameters, it may be possible to independently study the two generator mechanisms.  相似文献   

6.
Recently, Boege and Janssen [J. Acoust. Soc. Am. 111, 1810-1818 (2002)] fit linear equations to distortion product otoacoustic emission (DPOAE) input/output (UO) functions after the DPOAE level (in dB SPL) was converted into pressure (in microPa). Significant correlations were observed between these DPOAE thresholds and audiometric thresholds. The present study extends their work by (1) evaluating the effect of frequency, (2) determining the behavioral thresholds in those conditions that did not meet inclusion criteria, and (3) including a wider range of stimulus levels. DPOAE I/O functions were measured in as many as 278 ears of subjects with normal and impaired hearing. Nine f2 frequencies (500 to 8000 Hz in 1/2-octave steps) were used, L2 ranged from 10 to 85 dB SPL (5-dB steps), and L1 was set according to the equation L1 = 0.4L2 + 39 dB [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] for L2 levels up to 65 dB SPL, beyond which L1 = L2. For the same conditions as those used by Boege and Janssen, we observed a frequency effect such that correlations were higher for mid-frequency threshold comparisons. In addition, a larger proportion of conditions not meeting inclusion criteria at mid and high frequencies had hearing losses exceeding 30 dB HL, compared to lower frequencies. These results suggest that DPOAE I/O functions can be used to predict audiometric thresholds with greater accuracy at mid and high frequencies, but only when certain inclusion criteria are met. When the SNR inclusion criterion is not met, the expected amount of hearing loss increases. Increasing the range of input levels from 20-65 dB SPL to 10-85 dB SPL increased the number of functions meeting inclusion criteria and increased the overall correlation between DPOAE and behavioral thresholds.  相似文献   

7.
DPOAE input/output (I/O) functions were measured at 7f2 frequencies (1 to 8 kHz; f2/f1 = 1.22) over a range of levels (-5 to 95 dB SPL) in normal-hearing and hearing-impaired human ears. L1-L2 was level dependent in order to produce the largest 2f1-f2 responses in normal ears. System distortion was determined by collecting DP data in six different acoustic cavities. These data were used to derive a multiple linear regression model to predict system distortion levels. The model was tested on cochlear-implant users and used to estimate system distortion in all other ears. At most but not all f2's, measurements in cochlear implant ears were consistent with model predictions. At all f2 frequencies, the ears with normal auditory thresholds produced I/O functions characterized by compressive nonlinear regions at moderate levels, with more rapid growth at low and high stimulus levels. As auditory threshold increased, DPOAE threshold increased, accompanied by DPOAE amplitude reductions, notably over the range of levels where normal ears showed compression. The slope of the I/O function was steeper in impaired ears. The data from normal-hearing ears resembled direct measurements of basilar membrane displacement in lower animals. Data from ears with hearing loss showed that the compressive region was affected by cochlear damage; however, responses at high levels of stimulation resembled those observed in normal ears.  相似文献   

8.
Standing waves can cause errors during in-the-ear calibration of sound pressure level (SPL), affecting both stimulus magnitude and distortion-product otoacoustic emission (DPOAE) level. Sound intensity level (SIL) and forward pressure level (FPL) are two measurements theoretically unaffected by standing waves. SPL, SIL, and FPL in situ calibrations were compared by determining sensitivity of DPOAE level to probe-insertion depth (deep and "shallow") for a range of stimulus frequencies (1-8 kHz) and levels (20-60 dB). Probe-insertion depth was manipulated with the intent to shift the frequencies with standing-wave minima at the emission probe, introducing variability during SPL calibration. The absolute difference in DPOAE level between insertions was evaluated after correcting for an incidental change caused by the effect of ear-canal impedance on the emission traveling from the cochlea. A three-way analysis of variance found significant main effects for stimulus level, stimulus frequency, and calibration method, as well as significant interactions involving calibration method. All calibration methods exhibited changes in DPOAE level due to the insertion depth, especially above 4 kHz. However, SPL demonstrated the greatest changes across all stimulus levels for frequencies above 2 kHz, suggesting that SIL and FPL provide more consistent measurements of DPOAEs for frequencies susceptible to standing-wave calibration errors.  相似文献   

9.
In a previous report, it was shown that, in normal rabbit ears, the amplitude and phase of 2f1-f2 distortion-product otoacoustic emissions (DPOAEs) elicited by low-level (< 60-70 dB SPL) stimuli display a differential dependence on stimulus parameters to those evoked by high-level (> 60-70 dB SPL) stimuli, indicating differences in the underlying generation mechanisms. In the present study, the physiological vulnerability of DPOAEs in each of the two 2f1-f2 DPOAE-response regions identified on the basis of differential parametric properties, was characterized. Thus emissions evoked using stimulus levels from 45-75 dB SPL were measured over time upon: (1) induction of lethal anoxia, (2) acute injection of ethacrynic acid, and (3) acute injection of ethacrynic acid 2 h after a single administration of gentamicin. The DPOAEs evoked by low-level stimuli (45 dB SPL) were abolished within 3-4 min of induction of anoxia, whereas DPOAEs evoked by high-level stimuli (75 dB SPL) were unchanged in this period. The high-level emissions decreased with a complex time course postmortem, and demonstrated behaviors, including evidence of susceptibility to fatigue, suggesting a dependence upon a cochlear energy supply. Low-level DPOAEs could be temporarily abolished, with complete recovery, by an acute administration of ethacrynic acid that had little effect on high-level DPOAEs. Treatment with the gentamicin and ethacrynic-acid combination, which would be expected to produce widespread hair-cell damage, eliminated low-level DPOAEs, and greatly reduced high-level emissions. In combination with previously published data, these findings strongly suggest that low- and high-level 2f1-f2 DPOAEs arise from discrete sources. The data are consistent with the proposal that the low-level DPOAE source is an active, micromechanical process, but suggest that the proposed origin of high-level DPOAEs exclusively in the passive macromechanics of the cochlear partition may be incorrect. The elimination of both low- and high-level DPOAEs revealed the presence of a third, residual 2f1-f2 DPOAE component, approximately 75-80 dB below the stimulus-tone levels, that may reflect the true passive-distortion response of the cochlea.  相似文献   

10.
Distortion product otoacoustic emissions (DPOAEs) and basilar membrane (BM) vibration were measured simultaneously in the 6-9 kHz region of chinchilla cochleae. BM-Input-Output functions in a two-tone paradigm behaved similarly to DPOAEs for the 2f1-f2 component, nonmonotonic growth with the intensity of the lower frequency primary and a notch in the functions around 60 dB SPL. Ripples in frequency functions occur in both BM and OAE curves as a function of the distortion frequency. Optimum f2/f1 ratios for DPOAE generation are near 1.2. The slope of phase curves indicates that for low f2f1(<1.1) the emission source is the place location while for f2f1>1.1 the relative constancy of the phase function suggests that the place is the nonlinear region of f2, i.e., the wave location. Magnitudes of the DPOAEs increase rapidly above 60 dB SPL suggesting a different source or mechanism at high levels. This is supported by the observation that the high level DPOAE and BM-DP responses remain for a considerable period postmortem.  相似文献   

11.
Wave and place fixed DPOAE maps of the human ear   总被引:2,自引:0,他引:2  
Human intermodulation distortion product otoacoustic emissions (DPOAE) can be a mixture of low and high latency components. They have different level, phase, and suppression characteristics, which indicate that emissions arise both from the frequency region of the primary tones directly and indirectly via the DP frequency place. Which component dominates the measured DPOAE in the ear canal depends on the stimulus parameters, especially the frequency ratio, f2/f1. Interference between the two emissions adds complexity to measurements of DPOAE. The behavior and even existence of whichever emission route is lower in level often cannot directly be deduced from the raw DPOAE data because the other emission covers it. It is therefore not known whether both emissions are present for all stimulus parameters or whether the trends seen in each emission when they are the dominant emission route continue under stimulus conditions when they are not dominant. In this study, the two DPOAE components are separated by a post-processing method. Previously, maps of raw DPOAE data against f2/f1 and DP frequency have been obtained. To separate the components, sets of data consisting of f2/f1 sweeps were transformed by an inverse Fourier transform into the time domain. The low and high latency components appeared as two distinct peaks because of their different phase gradients. These peaks were separated by windowing in the time domain and two frequency domain maps were reconstructed, representing the low and high latency DPOAEs. It was found that the low latency component of the 2 f1-f2 DP was only emitted strongly with f2/f1 between approximately 1.1 and 1.3. The removal of the high latency component revealed the low ratio edge of this region, at which the level falls sharply. However, the low latency emission has been traced at reduced amplitude over a wide range of stimulus parameters. Although previously only observed at small frequency ratios, the high latency component was found to be present widely in the lower sideband, its level reducing slowly at larger f2/f1. Its phase behavior changes in the lower sideband, being approximately constant with DP frequency at small ratios of f2/f1, but deviating from this at wider ratios. These results support the hypothesis that a DPOAE component which propagates to and is re-emitted from the DP frequency place (place fixed emission) is present across a wide parameter range. However, for all but the close primary condition the lower sideband DPOAE is dominated by direct emission from the region of f2 and f1 wave interaction (wave fixed emission). A simple transmission line model is presented to illustrate how the observed DPOAE maps can arise on the basis of this hypothesis.  相似文献   

12.
Distortion product otoacoustic emission (DPOAE) suppression measurements were made in 20 subjects with normal hearing and 21 subjects with mild-to-moderate hearing loss. The probe consisted of two primary tones (f2, f1), with f2 held constant at 4 kHz and f2/f1 = 1.22. Primary levels (L1, L2) were set according to the equation L1 = 0.4 L2 + 39 dB [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)], with L2 ranging from 20 to 70 dB SPL (normal-hearing subjects) and 50-70 dB SPL (subjects with hearing loss). Responses elicited by the probe were suppressed by a third tone (f3), varying in frequency from 1 octave below to 1/2 octave above f2. Suppressor level (L3) varied from 5 to 85 dB SPL. Responses in the presence of the suppressor were subtracted from the unsuppressed condition in order to convert the data into decrements (amount of suppression). The slopes of the decrement versus L3 functions were less steep for lower frequency suppressors and more steep for higher frequency suppressors in impaired ears. Suppression tuning curves, constructed by selecting the L3 that resulted in 3 dB of suppression as a function of f3, resulted in tuning curves that were similar in appearance for normal and impaired ears. Although variable, Q10 and Q(ERB) were slightly larger in impaired ears regardless of whether the comparisons were made at equivalent SPL or equivalent sensation levels (SL). Larger tip-to-tail differences were observed in ears with normal hearing when compared at either the same SPL or the same SL, with a much larger effect at similar SL. These results are consistent with the view that subjects with normal hearing and mild-to-moderate hearing loss have similar tuning around a frequency for which the hearing loss exists, but reduced cochlear-amplifier gain.  相似文献   

13.
Given that high-frequency hearing is most vulnerable to cochlear pathology, it is important to characterize distortion-product otoacoustic emissions (DPOAEs) measured with higher-frequency stimuli in order to utilize these measures in clinical applications. The purpose of this study was to explore the dependence of DPOAE amplitude on the levels of the evoking stimuli at frequencies greater than 8 kHz, and make comparisons with those data that have been extensively measured with lower-frequency stimuli. To accomplish this, DPOAE amplitudes were measured at six different f2 frequencies (2, 5, 10, 12, 14, and 16 kHz), with a frequency ratio (f2/f1) of 1.2, at five fixed levels (30 to 70 dB SPL) of one primary (either f1 or f2), while the other primary was varied in level (30 to 70 dB SPL). Generally, the level separation between the two primary tones (L1 > L2) generating the largest DPOAE amplitude (referred to as the "optimal level separation") decreased as the level of the fixed primary increased. Additionally, the optimal level separation was frequency dependent, especially at the lower fixed primary tone levels ( < or = 50 dB SPL). In agreement with previous studies, the DPOAE level exhibited greater dependence on L1 than on L2.  相似文献   

14.
DPOAE sources are modeled by intermodulation distortion generated near the f2 place and a reflection of this distortion near the DP place. In a previous paper, inverse fast Fourier transforms (IFFTs) of DPOAE filter functions in normal ears were consistent with this model [Konrad-Martin et al., J. Acoust. Soc. Am. 109, 2862-2879 (2001)]. In the present article, similar measurements were made in ears with specific hearing-loss configurations. It was hypothesized that hearing loss at f2 or DP frequencies would influence the relative contributions to the DPOAE from the corresponding basilar membrane places, and would affect the relative magnitudes of SFOAEs at frequencies equal to f2 and fDP. DPOAEs were measured with f2 = 4 kHz, f1 varied, and a suppressor near fDP. L2 was 25-55 dB SPL (L1 = L2 + 10 dB). SFOAEs were measured at f2 and at 2.7 kHz (the average fDP produced by the f1 sweep) for stimulus levels of 20-60 dB SPL. SFOAE results supported predictions of the pattern of amplitude differences between SFOAEs at 4 and 2.7 kHz for sloping losses, but did not support predictions for the rising- and flat-loss categories. Unsuppressed IFFTs for rising losses typically had one peak. IFFTs for flat or sloping losses typically have two or more peaks; later peaks were more prominent in ears with sloping losses compared to normal ears. Specific predictions were unambiguously supported by the results for only four of ten cases, and were generally supported in two additional cases. Therefore, the relative contributions of the two DPOAE sources often were abnormal in impaired ears, but not always in the predicted manner.  相似文献   

15.
2f1-f2 distortion product otoacoustic emissions (DPOAEs) were recorded from guinea pigs. DPOAEs showed complex time dependence at the onset of stimulation. The DPOAE, measured during the first 500 ms, can either decrease or increase at the onset depending on both the frequencies and levels of the primary tones. These changes are closely associated with amplitude minima (notches) of the DPOAE I/O functions. These notches are characteristic of DPOAE growth functions measured from guinea pigs for primary tones of 50-60-dB sound-pressure level (SPL). Apparent changes in the DPOAE amplitude occur because the notch shifts to higher levels of the primaries during the onset of stimulation. This shift of the notch to higher levels increases for lower f2/f1 ratios but does not exceed about 2 dB. DPOAE amplitude increases for a constant level of the primaries if the onset emission is situated at the low-level, falling slope of the notch. If the onset DPOAE is located on the high-level, rising slope of the notch, then the upward shift of the notch causes the emission either to decrease monotonically, or to decrease initially and then increase. By establishing that the 2f1-f2 onset changes reflect a shift in the growth-function notch, it is possible to predict the temporal behavior of DPOAEs in the two-dimensional space of the amplitude of the primaries and for their different frequency ratios.  相似文献   

16.
Stimulus frequency otoacoustic emission (SFOAE) sound pressure level (SPL) and latency were measured at probe frequencies from 500 to 4000 Hz and probe levels from 40 to 70 dB SPL in 16 normal-hearing adult ears. The main goal was to use SFOAE latency estimates to better understand possible source mechanisms such as linear coherent reflection, nonlinear distortion, and reverse transmission via the cochlear fluid, and how those sources might change as a function of stimulus level. Another goal was to use SFOAE latencies to noninvasively estimate cochlear tuning. SFOAEs were dominated by the reflection source at low stimulus levels, consistent with previous research, but neither nonlinear distortion nor fluid compression become the dominant source even at the highest stimulus level. At each stimulus level, the SFOAE latency was an approximately constant number of periods from 1000 to 4000 Hz, consistent with cochlear scaling symmetry. SFOAE latency decreased with increasing stimulus level in an approximately frequency-independent manner. Tuning estimates were constant above 1000 Hz, consistent with simultaneous masking data, but in contrast to previous estimates from SFOAEs.  相似文献   

17.
Both distortion product otoacoustic emissions (DPOAEs) and auditory steady-state responses (ASSRs) provide frequency-specific assessment of hearing. However, each method suffers from some restrictions. Hearing losses above 50 dB HL are not quantifiable using DPOAEs and their performance at frequencies below 1 kHz is limited, but their recording time is short. In contrast, ASSRs are a time-consuming method but have the ability to determine hearing thresholds in a wider range of frequencies and hearing losses. Thus, recording DPOAEs and ASSRs simultaneously at their adequate frequencies and levels could decrease the overall test time considerably. The goal of the present study was to develop a parameter-setting and test-protocol to measure DPOAEs and ASSRs binaurally and simultaneously at multiple frequencies. Ten normal-hearing and 23 hearing-impaired subjects participated in the study. The interaction of both responses when stimulated simultaneously at frequencies between 0.25 and 6 kHz was examined. Two limiting factors need to be kept. Frequency distance between ASSR carrier frequency f(c) and DPOAE primary tone f(2) needs to be at least 1.5 octaves, and DPOAEs may not be measured if the ASSR stimulus level is 70 dB SPL or above. There was a significant correlation between pure-tone and DPOAE/ASSR-thresholds in sensorineural hearing loss ears.  相似文献   

18.
Thresholds were measured for the detection of 20-ms sinusoids, with frequencies 500, 4000, or 6500 Hz, presented in bursts of bandpass noise of the same duration and centered around the signal frequency. A range of noise levels from 35 to 80 dB SPL was used. Noise at different center frequencies was equated in terms of the total noise power in an assumed auditory filter centered on the signal frequency. Thresholds were expressed as the signal levels, relative to these noise levels, necessary for subjects to achieve 71% correct. For 500-Hz signals, thresholds were about 5 dB regardless of noise level. For 6500-Hz signals, thresholds reached a maximum of 14 dB at intermediate noise levels of 55-65 dB SPL. For 4000-Hz signals, a maximum threshold of 10 dB was observed for noise levels of 45-55 dB SPL. When the bandpass noises were presented continuously, however, thresholds for 6500-Hz, 20-ms signals remained low (about 1 dB) and constant across level. These results are similar to those obtained for the intensity discrimination of brief tones in bandstop noise [R. P. Carlyon and B. C. J. Moore, J. Acoust. Soc. Am. 76, 1369-1376 (1984); R. P. Carlyon and B. C. J. Moore, J. Acoust. Soc. Am. 79, 453-460 (1986)].  相似文献   

19.
Distortion product otoacoustic emission (DPOAE) frequency functions were measured in normal-hearing and hearing-impaired ears. A fixed-f2/swept-f1 paradigm was used with f2 fixed at half-octave intervals from 1 to 8 kHz. L1 was always 10 dB greater than L2, and L2 was varied from 65 to 10 dB SPL in 5-dB steps. The responses were quantified by the frequency and amplitude of the peak response. Peak responses were closer to f2 in higher frequency regions and for lower intensity stimulation. Results from hearing-impaired subjects suggest that audiometric thresholds at the distortion product frequency, fdp, in addition to hearing status at f2, can affect DPOAE results. Results are discussed in terms of several manifestations of a second resonance model, as well as a dual source model for the generation of DPOAEs as measured in the ear canal of humans. It appears that a dual source model accounts for the data better than second filter models.  相似文献   

20.
The effects of primary-tone separation on the amplitude of distortion-product emissions (DPEs) at the 2f1-f2 frequency were systematically examined in ten ears of five subjects. All individuals had normal hearing and middle-ear function based upon standard clinical measures. Acoustic-distortion products were elicited at 1, 2.5, and 4 kHz by equilevel primaries at 65, 75, and 85 dB SPL, while f2/f1 ratios were varied in 0.02 increments from 1.01-1.41 (4 kHz), 1.01-1.59 (2.5 kHz), or 1.01-1.79 (1 kHz). A principal outcome reflected in the detailed structure of both average and individual ratio functions was a nonmonotonic change in DPE amplitude as the ratio of f2/f1 increased. Despite the presence of amplitude nonmonotonicities, there was clearly a region of f1 and f2 separation that generated a maximum DPE. The effects of primary-tone separation on DPE amplitudes were systematically related to DPE frequency and primary-tone level. For all three levels of stimulation, the f2/f1 ratio was inversely related to DPE frequency. Thus larger ratios reflecting a greater separation of f1 and f2 were more effective in generating DPEs at 1 kHz rather than at 4 kHz. The optimal ratio for 2.5 kHz fell at an intermediate value. Conversely, acoustic distortion-product amplitude as a function of primary-tone level was directly related to the frequency separation of the primary tones. Regardless of the frequency region of the primary tones, smaller f2/f1 ratios were superior in generating DPEs in response to 65-dB stimuli, whereas larger ratios elicited bigger DPEs with primaries at 75 and 85 dB SPL. Within any specific stimulus-parameter combination, individual variability in DPE amplitude was noted. When all stimulus conditions describing the variations in frequency and level were considered, an f2/f1 ratio of 1.22 was most effective in maximizing DPE amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号