首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I numerically simulate and compare the entanglement of two quanta using the conventional formulation of quantum mechanics and a time-symmetric formulation that has no collapse postulate. The experimental predictions of the two formulations are identical, but the entanglement predictions are significantly different. The time-symmetric formulation reveals an experimentally testable discrepancy in the original quantum analysis of the Hanbury Brown–Twiss experiment, suggests solutions to some parts of the nonlocality and measurement problems, fixes known time asymmetries in the conventional formulation, and answers Bell’s question “How do you convert an ’and’ into an ’or’?”  相似文献   

2.
The conventional explanation of delayed-choice experiments appears to violate our causal intuition at the quantum level. I reanalyze these experiments using time-reversed and time-symmetric formulations of quantum mechanics. The time-reversed formulation does not give the same experimental predictions. The time-symmetric formulation gives the same experimental predictions but actually violates our causal intuition at the quantum level. I explore the reasons why our causal intuition may be wrong at the quantum level, suggest how conventional causation might be recovered in the classical limit, propose a quantum analog to the classical block universe viewpoint, and speculate on implications of the time-symmetric formulation for cosmological boundary conditions.  相似文献   

3.
A time-symmetric version of quantum mechanics provides a tentative solution of the cosmic age discrepancy in current cosmology. Due to retrocausal effects, the age of old stars is greatly overestimated.  相似文献   

4.
《Comptes Rendus Physique》2016,17(7):766-777
In this review, we discuss recent experiments that investigate how the quantum sate of a superconducting qubit evolves during measurement. We provide a pedagogical overview of the measurement process, when the qubit is dispersively coupled to a microwave frequency cavity, and the qubit state is encoded in the phase of a microwave tone that probes the cavity. A continuous measurement record is used to reconstruct the individual quantum trajectories of the qubit state, and quantum state tomography is performed to verify that the state has been tracked accurately. Furthermore, we discuss ensembles of trajectories, time-symmetric evolution, two-qubit trajectories, and potential applications in measurement-based quantum error correction.  相似文献   

5.
It has recently been argued (Shimony, Erkenntnis 45:337, 1997) that time-symmetry does not hold for pre- and post-selected ensembles in quantum mechanics. That conclusion depends on what is meant by “time-symmetry” in relation to those types of ensembles. It is shown that on the conventional view of time-symmetry, pre- and post-selected ensembles are time-symmetric as was originally proposed.  相似文献   

6.
The usual formula for transition probabilities in nonrelativistic quantum mechanics is generalized to yield conditional probabilities for selected sequences of events at several different times, called consistent histories, through a criterion which ensures that, within limits which are explicitly defined within the formalism, classical rules for probabilities are satisfied. The interpretive scheme which results is applicable to closed (isolated) quantum systems, is explicitly independent of the sense of time (i.e., past and future can be interchanged), has no need for wave function collapse, makes no reference to processes of measurement (though it can be used to analyze such processes), and can be applied to sequences of microscopic or macroscopic events, or both, as long as the mathematical condition of consistency is satisfied. When applied to appropriate macroscopic events it appears to yield the same answers as other interpretative schemes for standard quantum mechanics, though from a different point of view which avoids the conceptual difficulties which are sometimes thought to require reference to conscious observers or classical apparatus.  相似文献   

7.
8.
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition it is cumbersome to calculate C in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This new method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method can be used to calculate the C operator in quantum field theory. The C operator is a new time-independent observable in PT-symmetric quantum field theory.  相似文献   

9.
Within quantum mechanics, a complete set of commutting observables can be found which describe the attributes of a system at a given time. However, the correct way to describe attributes of a system in time is still an open question. We discuss the difficulties in extending the standard approach of quantum mechanics to describe attributes of a system in time. We find that measuring when an event occurred and measuring that it occurred, are complimentary in Bohr's sense. To exemplify the differences between measurements at a given time and in time, we will compare Rovelli's recent proposal (quant-ph/9802020), to determine “at what time does a measurement occurred” with another model of a continuous measurement in time. Rovelli's scheme answers the question “has the measurement already occurred at a certain time?”, but does not answer to the more difficult question: “when did the measurement occur?” We also discuss the use of the probability current to measure the time at which a particle arrives to a certain location.  相似文献   

10.
The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a “reinterpretation postulate” to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.  相似文献   

11.
12.
13.
The Hamiltonian H specifies the energy levels and the time evolution of a quantum theory. It is an axiom of quantum mechanics that H be Hermitian. The Hermiticity of H guarantees that the energy spectrum is real and that the time evolution is unitary (probability preserving). In this talk we investigate an alternative formulation of quantum mechanics in which the mathematical requirement of Hermiticity is replaced by the more physically transparent condition of space-time reflection (PT) symmetry. We show that if the PT symmetry of a Hamiltonian H is not broken, then the spectrum of H is real. Examples of PT-symmetric non-Hermitian Hamiltonians are H=p 2+ix 3 and H=p 2-x 4. The crucial question is whether PT-symmetric Hamiltonians specify physically acceptable quantum theories in which the norms of states are positive and the time evolution is unitary. The answer is that a Hamiltonian that has an unbroken PT symmetry also possesses a physical symmetry that we call C. Using C, we show how to construct an inner product whose associated norm is positive definite. The result is a new class of fully consistent complex quantum theories. Observables exhibit CPT symmetry, probabilities are positive, and the dynamics is governed by unitary time evolution.  相似文献   

14.
Counterfactuals in quantum theory are briefly reviewed and it is argued that they are very different from counterfactuals considered in the general philosophical literature. The issue of time symmetry of quantum counterfactuals is considered and a novel time-symmetric definition of quantum counterfactuals is proposed. This definition is applied for analyzing several controversies related to quantum counterfactuals.  相似文献   

15.
16.
In this work, we present a general scheme to improve quantum state transfer (QST) by taking advantage of quantum partially collapsing measurements. The scheme consists of a weak measurement performed at the initial time on the qubit encoding the state of concern and a subsequent quantum reversal measurement at a desired time on the destined qubit. We determine the strength qrqr of the post quantum reversal measurement as a function of the strength pp of the prior weak measurement and the evolution time tt so that near-perfect QST can be achieved by choosing pp close enough to 1, with a finite success probability, regardless of the evolution time and the distance over which the QST takes place. The merit of our scheme is twofold: it not only improves QST, but also suppresses the energy dissipation, if any.  相似文献   

17.
We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.  相似文献   

18.
杨连武  夏云杰 《中国物理 B》2016,25(11):110303-110303
We analyze universal conditions where the l_1 norm and relative entropy of coherence are amplified and frozen under identical bit-flip channels;that is,using pre-measurements(quantum weak measurements or quantum measurement reversals) on the systems before undergoing local bit-flip channels.With the option of quantum weak measurements or quantum measurement reversals,the measurement strength and the success probability are all determined by the initial state of the quantum system.  相似文献   

19.
Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号